Another Kind of Volume Manager

CHAPTER 5: VOLUMES

by Volker Herminghaus

51 OVERVIEW

In the previous chapter you learned a lot about disk groups, or DGs. But DGs are mere
containers for the truly interesting virtual objects, namely volumes. In this chapter we
will concentrate on volumes: how they are created, modified, and removed. How you put
a file system on them and use them for productive work. How they behave on disk, path
or host failures. How 1/O to a mirrored volume is handled and how consistency is always
guaranteed. What internal virtual objects a volume consists of and how you can inspect
and understand them, and much more.

5.1.1 WHAT IS A VOLUME?

A VxXVM volume is a modern replacement for a slice or partition. It serves as a container
for file system or raw data and allows |/O operations to proceed without being volume-
aware, i.e. the software layers above the volume need not be changed in order to work
with volumes. Volume 1/0 is completely transparent unless extra effort is undergone to find
out the exact nature of the device. So for all purposes a volume can replace a Solaris or
Linux partition, an AIX volume or an HP-UX volume (especially since HP's internal volume
management is based on an old version of Veritas Volume Manager). Be aware that a VxVM
volume is not the virtualized equivalent of a hard disk, however! If it was, then it could
have a VTOC in block zero and you could partition it or use vxdi skset up or vxencap on it.
That wouldn't make too much sense, would it? Instead of emulating a hard disk it emulates

V. Herminghaus and A. Sriba, Storage Management in Data Centers, 99
DOI: 10.1007/978-3-540-85023-6_5, © Springer-Verlag Berlin Heidelberg 2009

Volumes

a partition. And what is a partition? A partition is a block-addressable extent that stores
data persistently, nothing else. So it should be something relatively easy to emulate.

But there is one crucial feature of a partition that is not so easy to emulate in a volume
management software, and that is the following: A partition, since it holds just one copy
of the data, will always deliver the same data for any given extent unless you update the
data. In a redundant volume, let's say a three-way mirror, this is not at all easy to emulate.
Of course you write data to all three mirrors when a write is issued to the volume. But will
they all succeed? What if there are hundreds of 1/0s outstanding on each of the mirrors and
then the host crashes. After a reboot, how can we be sure that all mirror sides are identi-
cal? Is there a preferred mirror side that gets written first and holds the most recent data?
No, there isn't! Does VxVM copy one mirror side over all the others? No, it doesn't! Does
VxVM compare the mirror sides? No, it doesn't! Does VXVM break the partition paradigm
and actually deliver different data on consecutive reads of the same extents? No, it doesn't.
Well, how does VxVM the guarantee conformance to the critical partition paradigm: to give
exactly the same data for the same extent unless the extent is updated?

The answer to this question has to do with quantum physics and Schrddinger's cat
(really!). This answer, and much more, will be discussed in detail in the sections that follow.
But first, some simple stuff.

100

Simple Volume Operations

VX

Easy
Sailing

5.2 SImPLE VOLUME OPERATIONS

5.2.1 CREATING, USING AND DISPLAYING A VOLUME

All common volume operations are done via one simple, unified command. This command is
called vxassi st. In very early versions of VxVM volumes were created by allocating extents
from disks in a disk group, associating them with plexes, and putting them into volume
objects. But that was much too complicated and cumbersome to be useful. So the com-
mand vxassi st was created, which did all the magic of allocating virtual objects, calculat-
ing disk and plex offsets, mapping everything together and starting the volume. In fact, you
can still watch part of what vxassi st does internally when you pass the - v switch to the
command. You can then see what other tools are called by vxassi st internally. Although
the allocation commands are usually not displayed because allocations are done by calls
to the vxvm allocation library. Let us start by creating a DG out of six disks. Let's call the
DG "adg" for "a disk group". Then, let's create a simple volume "avol " (for "a volume") in
our DG using the vxassi st command. We'll put a file system on the volume and mount the
file system. Keep in mind what you learned in chapter 2 (Exploring VxVM) that the device
driver for VxVM resides in / dev/ vx/ *dsk/ <DGhane>/ <Vol nane>:

vxdi sk list # check what we have: six VxVMdisks in cdsdisk format

DEVI CE TYPE DI SK GROUP STATUS
c0t 2d0s2 aut o: cdsdi sk - - online
c0t 3d0s2 aut o: cdsdi sk - - online
c0t 4d0s2 aut o: cdsdi sk - - online
c0t 10d0s2 aut o: cdsdi sk - - online
c0t 11d0s2 aut o: cdsdi sk - - online
c0t 12d0s2 aut o: cdsdi sk online

vxdg init adg adg0l=cOt 2d0 angZ Ot 3d0 angB c0t4d0 (...) # nake a DG
101

Volumes

export VXVM DEFAULTDG-adg # Set our default DG for this session
vxassi st make sinplevol 1g # Create a volume of exactly 1 GB
newfs /dev/vx/rdsk/adg/si nplevol # Make a UFS file systemon the vol ume
newfs: construct a new file system/dev/vx/rdsk/adg/sinplevol: (y/n)?y
[dev/ vx/ rdsk/ adg/ si npl evol 2097152 sectors in 1024 cylinders of 32 tracks,
64 sectors

1024.0MB in 32 cyl groups (32 c¢/g, 32.00MB/g, 15872 i/qg)
super-block backups (for fsck -F ufs -0 b=#) at:
32, 65632, 131232, 196832, 262432, 328032, 393632, 459232, 524832, 590432,
1443232, 1508832, 1574432, 1640032, 1705632, 1771232, 1836832, 1902432,
1968032, 2033632,
mount /dev/vx/dsk/adg/sinplevol /mt # Mount the file system (FS)
#df -h /mt # Check the FS: 1MB used, 903MB free
Filesystem size used avail capacity Munted on /dev/vx/dsk/adg/ sinplevol

961IM 1.0M 903M 1% /mmt

#cp -r [kernel/* [mmt/. # Put some data on the vol unme

#df -h /mt # Check the FS: 89MB used, 815MB free

Filesystem size used avail capacity Munted on /dev/vx/dsk/adg/ sinplevol
961M 89M 815M 10% /mmt

#1s [mt
crypto drv exec ipp [ost +f ound i sc st rmod
dacf dtrace fs kmidb nmac sched Sys

OK, the volume seems to work just like a normal partition. Now let's look at the vol-
ume. First, check what the volume looks like in the file system tree, i.e. what attributes the
device file has:

I's -1 [devlvx/*dsk/ adg/ si npl evol
brw------ 1 root root 270, 62000 May 16 21:15 /dev/vx/ dsk/adg/ si mpl evol
CrW------ 1 root root 270, 62000 May 16 21:16 /dev/vx/rdsk/ adg/ si npl evol

OK, we see a bl ock and a charact er device. Compare these to normal disk partitions:

#1s -1L /dev/*dsk/cOt 10d0s2
brwr----- 1 root Sys 32, 74 May 17 01:48 /dev/ dsk/cOt 10d0s2
CrWr----- 1 root Sys 32, 74 May 17 01:48 /dev/rdsk/cOt10d0s2

They look just the same except the volume is not group readable by sys and has dif-
ferent major and minor numbers. We actually cannot see a lot about the volume in the file
system representation of a volume. We cannot see what virtual objects it consists of, or
what state they are in. Why can't we see that in the file system? Because, as was stressed
before, the volume has to look exactly the same as a partition to the rest of the system, so
there is simply no file system interface to look into the details of the volume. Can we derive
much about the internals of a partition by looking at the disk partition device node? No,
we cannot. With volumes it is just the same. The device node is not the right place to look
in order to find more information about the storage object.

102

Simple Volume Operations

What we need to do is ask VXVM to show us what it knows about the volume. There is
a command for that purpose: it is called vxprint and normally takes the DG as a parameter
(it does not respect the default-DG). It shows all virtual objects residing in the DG, or all
virtual objects from all DGs if no DG is specified.

vxprint -g adg

TY NAME ASSCC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg adg adg - - - - -

dm adg01 c0t 2d0s2 - 17846208 -

dm adg02 c0t 3d0s2 - 17702192 -

dm adg03 c0t 4d0s2 - 17616288 -

dm adg04 c0t10d0s2 - 17616288 -

dm adg05 c0t11d0os2 - 8315008 -

dm adg06 c0t12d0s2 - 35771008 -

v sinplevol fsgen ENABLED 2097152 - ACTI VE

pl sinplevol-01 sinplevol ENABLED 2097152 - ACTI VE

sd adg01-01 sinpl evol -01 ENABLED 2097152 0

The output of the vxprint command is easy to parse if you know what to look for,
so let's go through it in this Easy Sailing part. If you are bored, you can skip to The Full
Battleship part beginning on page 120.

5.2.2 USEFUL VXPRINT FLAGS EXPLAINED

In the later parts of this book we will use several more flags to make the output more
palatable to the reader. These flags are:

-1 to display each line in its individual format, with a header at the beginning of each
disk group record explaining what the meaning of each column of output is for the
given object

- to suppress the header information (once you get used to the output format you don't
need the headers any more, and they take away a whole lot of space)

-h to hierarchically list all objects below the specified ones (i.e. if you specify volumes
it will also list the plexes and subdisks contained inside the volumes)

-V to display the volumes and, due to the -h flag above, all records associated with
them. If we did not specify -v, or if we used -r (related) instead of -h, then the output
would also list the disk group and disk media information, which we like to suppress
here in order to save valuable page space.

Basically, the output consists of several sections: a header section, a disk group sec-
tion, a Disk Media section, and a Volume section. The header section in the example above
consists of only a single line listing Type, Association, KernelState, Length, PlexOffset,
User State, and TemporaryUtility and PermanentUtility fields. The header section will be
expanded in the next command to show much more detail.

The DG section is right below the header and starts with the abbreviation for disk

103

Volumes

group, "dg". As you can see, it is associated to itself and has neither state nor other infor-
mation to display. The Disk Media section is below that and has lines starting with the
abbreviation for Disk Media, "dni'. It shows what access names are associated with our
VxXVM disk names, and their length. Everything else that appears in the header line is inap-
plicable, which is indicated by a dash ("-").

The last part is the most interesting: It shows three objects: The volume (si npl evol,
in the line beginning with a "v" for volume), a plex called si npl evol - 01, its line begin-
ning with "pl " for plex. It is associated with the volume, as you can see from looking at
the ASSQOC column of the plex record. And finally a record beginning with "sd" for subdisk
and listing the attributes of the subdisk adg01-01. The name implies that it is the first
subdisk that was allocated from the disk medium adg01. This subdisk is associated with the
plex avol - 01. Again, you can check this by looking at the value in its ASSOC column. The
vxprint command knows the association hierarchy and arranges the objects accordingly:
The volume at the top level, then the plex, then the subdisk.

All of these objects have kernel state (KSTATE) information (ENABLED) etc., but still
many of the fields are inapplicable in this output format.

To improve on the output format, we suggest you use the -r and -t flags for vxprint.
This will use an individual format and show individual headers for each object type and
thus pack much more useful information into the lines. Later, when you are familiar with
the output format, you can add the - g flag, which will suppress the large block of headers
at the beginning.

Now that we have seen all we wanted to see by using vxprint let's get rid of
the volume to create some new ones. There are several ways to do remove a volume:
one is using vxassi st renmove volume <vol nane> and one is using the more low-level
vxedit -rf rm <vol names> command. The vxedit command actually has several advan-
tages: it involves less typing, it can remove more than one volume at a time, and is can
remove volumes regardless of their status, while vxassi st tends to have problems remov-
ing volumes that are somehow mangled, have associated snapshots, don't have all plexes
enabled and such. Here are the two alternative commands, choose for yourself:

vxassi st remove vol une sinpl evol
vxedit -rf rmsinplevol

You may wonder what the -rf flags do that we pass to vxedit. The short explana-
tion is that vxedit will simple remove any virtual object you pass it. But if that object has
associated subobjects, then vxedi t will need to recurse into the subtree and remove all the
associated objects recursively, from bottom to top. That is the reason for supplying the -r
flag, because that will enable recursive deletion. If the volume is currently started (i.e. it is
ENABLED and ACTI VE) then vxedit also requires the use of the -f flag (force). You can omit
the -f flag if the volume is stopped.

If you tried the commands you will have noticed you get an error message:
VXWM vxedit ERROR V-5-1-1242 Vol une sinplevol is opened, cannot remove

This is because the volume is still mounted. Once you unmount it you can delete the

104

Simple Volume Operations

volume. Rest assured that VxVM keeps you from deleting objects that are currently in
active use, just like the f ormat command prohibits you from deleting a currently mounted
partition. by telling you: "Cannot |abel disk while it has mounted partitions".

So we unmount the volume and delete it:

umount /mt
vxedit -rf rmsinplevol

This time it works! Now you know how to create, use, inspect, and remove volumes
from a disk group. Time for some more interesting topics.

5.2.3 STARTING AND STOPPING VOLUMES

VXVM's STATE MACHINE

When a volume becomes available to the system (via creation or via DG import) the system
does not know if the contents of the volume can or cannot be trusted. For instance, a vol-
ume on a DG that was deported and is now imported might have had write errors while it
was imported by another host. Or the other host could have crashed while it was writing
to a redundant volume etc. It is obvious that some kind of check needs to be done before
we can trust the volume's integrity.

This is analogous to what the mount () system call needs to do when a user wants to
mount a file system: can the contents of the file system be trusted? Was the file system
properly unmounted, thus flushing all buffers and leaving it in a proper state? Or had the
system crashed and left the file system in an inconsistent state? In classical UNIX, the
mount () and unmount () system calls use a single bit, the dirty flag, which is persisted in
the file system's superblock, to remember the state of the file system. When a file system
is mounted, the dirty flag is inspected and, if it is clean, the file system is mounted and
the dirty flag set to dirty. When the file system is unmounted, the dirty flag is reset to
cl ean. If a system crashes, then the dirty flag is, of course, not reset and remains dirty. So
the next time a user tries to mount the file system, the mount () system call inspects the
dirty flag and finds it dirty. In that case, the file system is not mounted by a file system
check (f sck) is requested.

The same kind of check must be done by volume manager, albeit on a lower level, to
ensure that a mirrored volume is internally consistent. This check does by no means imply
reading and comparing all mirrors, just like mounting a file system does not always require
a file system check (fsck). That would be very wasteful. Instead, VXVM maintains state
information in the configuration database that get changed when certain events happen.
For instance, when a volume is written to the first time after opening it, a bit in the con-
figuration database is set that flags the fact that the device is now potentially out of sync.
When the volume is closed (which can only be done after all /0 has been flushed to all
mirrors) this bit is reset. This can be directly compared to . There is more state information
like this. For instance, a plex that has encountered unrecoverable 1/0 errors to one of its

105

Volumes

subdisk is marked DISABLED so that no further read (or write) traffic for the plex is gener-
ated. Then, when the subdisk is repaired, the plex state is set to STALE, indicating that the
data inside the plex is not current.

When you want to use a volume then all this state information needs to be checked
to find out if 1/0 to the volume is possible and reasonable, or if e.g. the mirrors are out of
sync. This process needs to be done only once, at the beginning. Whatever happens while
the volume is online and undergoing /0 will be caught by VxVM and lead to appropriate
reactions. But the initial state must be checked before using the volume. Exactly that is
done by the vxvol start command. It is a volume sanity check followed by allowing I/O if
the volume is sane. It does so by setting the volume's state to ACTIVE and its kernel state
to ENABLED.

So what does vxvol stop do? Functionally it does nothing but set the ENABLED flag
off so that further user access is impossible. It is neither necessary nor required by VxVM
to stop your volumes before deporting a DG. It does make some maintenance commands
easier that otherwise require an extra option flag to force an action in order to work on
a started volume, but that's about it. You don't normally stop any volumes, nor do you
normally need to.

There is much more about the state machine in the troubleshooting sections of this
book beginning on page 349.

5.3 VoLumeE LAyouTts AND RAID LEVELS

In this section you will learn how to specify the various RAID levels for VxXVM volumes.
The first thing you will learn is that VXVM does not actually use RAID levels numbered O
through 5. Instead, it uses what would properly be called volume features: The striping fea-
ture, the mirroring feature, the XOR-parity feature, the concatenation feature, the logging
feature and so on. You will see that these features can be added to make up almost any
reasonable volume type. Not all combinations are possible, but then again, not all are rea-
sonable either, and what's possible should make you a pretty happy administrator indeed.

5.3.1 VOLUME FEATURES SUPPORTED BY VXVM

CONCATENATION

This is the simplest layout of all the RAID levels. Originally called RAID-0, it was intended to
connect disks together to overcome the size limitation. By concatenating disks, the capac-
ity of the resulting volume was equivalent to the sum of the capacities of the individual
disks. Disks could be of different sizes.

Of course, VXVM will not concatenate disks to form a larger virtual disk, like the origi-
nal RAID concept did. Instead, it will concatenate subdisks (extents on physical disks) by
mapping them into a plex at different plex offsets (which turns up as PLOFFS in vxprint),
resulting in a contiguous virtual address space that can grow to almost unlimited size. There
is no need to specify anything particular on the command line for VxXVM to enable concat-
enation. The concat volume layout is the default layout unless the / et ¢/ def aul t / vxassi st

106

Volume Layouts and RAID Levels

file forces a different layout. VXVM will concatenate as necessary, provided there is enough
space left that has the required storage attributes. We will say a little more on storage
attributes later.

Synopsis and sample command to create a volume with the concatenation feature:

vxassi st -g <DGhane> make <vol name> <size> [|ayout =concat]
vxassist -g adg make avol 1g
vxprint -htv -g adg

v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol - 01 adgdl 0 2097152 0 c0t2d0 ENA

The first line starts with the letter v. This means it is a line describing the volume vir-
tual object. The next line starts with the string pl, which means that this line describes a
plex virtual object. The third line describes a subdisk, which can be identified by the string
sd at the beginning of the line. The second columns of each line describes the virtual
object's name. And the third column of each line of the output identifies what other virtual
object the given object is associated to. The volume, as we can see, is not associated to
anything; its third column contains a dash (-). The plex, however (whose name is avol - 01),
is associated to an object called avol , which happens to be the volume that the plex resides
in. And the subdisk (adg01- 01) is associated with the plex avol - 01. We emphasized these
words to make you find the relevant information more quickly.

Note that the sizes in column six of volume, plex, and subdisk are identical to what we
specified, but are given in blocks of half a kilobyte each. So in order to find the amount of
megabytes we have to divide by 2 and then by 1024, or just simply by 2048:

be -1
2097152/ 2048
1024. 0000000000 # Exactly what we wanted: 1024 MB equals 1.0 GB!

Other information you will find useful to know is the following:

The word SELECT in column 7 of the volume line means the read policy. This could
be SELECT, ROND, and PREFER More information on volume read policies can be found
later in this chapter. In the same column of the plex line you will see the word GONCAT. This
designates the layout of the plex (there is actually no such thing as a volume layout - a
plex has all the layout; the volume just has one or more plexes, turning it into a mirrored
or unmirrored volume).

In column four and five the virtual objects plex and volume display a kernel state and
a (user) state. A state of ENABLED means that 1/0 to the object is possible, while DI SABLED
means no I/0 is possible to the object at all. There is also a third kernel state, namely
DETACHED, which means that user 1/0 is not possible but kernel 1/0 is possible. This is needed
for internal resynchronisation or RAID-5 initialization mechanisms and not of general
interest here.

If we stop the volume, or before the volume is started after importing the disk group,
the kernel states will be disabled and I/O will not be possible:

vxvol stop avol # stop the vol une

107

Volumes

vxprint -ght vgadg # ook what's changed

v avol DI SABLED CLEAN 2097152 SELECT - fsgen
pl avol -01 avol DI SABLED CLEAN 2097152 CONCAT - RW
sd adg01-01 avol - 01 adgol 0 2097152 0 c0t2d0 ENA

newfs /dev/vx/dsk/adg/avol # trying to use the volune fails

[dev/ vx/ rdsk/ adg/ avol : No such device or address

vxvol start avol # start the volume again

vxprint -ght vgadg # DI SABLED has becone ENABLED, CLEAN has becone ACTIVE

v avol ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol -01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol - 01 adgol 0 2097152 0 c0t2d0 ENA

newfs /dev/vx/dsk/adg/avol # using the volume now works
newfs: construct a new file system/dev/vx/rdsk/adg/avol: (y/n)?y
[dev/ vx/ rdsk/ adg/ avol : 2097152 sectors in 1024 cylinders of 32 tracks, 64 sec-
tors

1024.0MB in 32 cyl groups (32 c¢/g, 32.00MB/g, 15872 i/qg)
super-block backups (for fsck -F ufs -0 b=#) at:
32, 65632, 131232, 196832, 262432, 328032, 393632, 459232, 524832, 590432,
1443232, 1508832, 1574432, 1640032, 1705632, 1771232, 1836832, 1902432,
1968032, 2033632,

STRIPING

Striping originated as RAID-0, just like the concat layout. To prevent misunderstandings:
the RAID levels were more specifically called RAID-0 concat and RAID-0 stripe, respec-
tively. The RAID levels have been discussed in chapter 1 on page 7-9 to some extent, but
let's reiterate the basics here.

A striped volume distributes its contents in a regular pattern over its subdisks. The
intention of striping originally was to alleviate the long wait times that occurred on large
read/write 1/Os to slow disks. These disks' controllers or the HBAs were so slow that the
disks were often formatted with an interleaving factor because data could not be trans-
ferred at full speed to the host. Striping is a little complicated to explain in words, but it
may be okay if we use a somewhat creative analogy here:

Imagine you had ten salamis, and you want to make salami sandwiches. The salamis
are your separate disk spindles and the sandwiches are your volumes. Then if you make a
concat volume, you slice up the first salami and put the slices on the sandwiches until the
first salami is gone, then you take the second salami and so on. If you were VxVM, by the
way, then you would try cutting each salami at exactly the right angle so that a single slice
covers the whole sandwich, while IBM's AIX LVM would cut the salamis into lots of tiny
slices and then cover the sandwich with them but that's not the issue here.

108

Volume Layouts and RAID Levels

EIEIEIEIES

Figure 5-1: Striping is reminiscent of making a salami sub. Data is mapped
in identically sized slices, one slice at a time, across multiple
"columns”. The size of a data slice is called stripe size, stripe unit
size, stripe width, or similar. There is no generally accepted term
for the size of one "layer of salami”, i.e. the size of a slice times
the number of columns.

When you are striping then you are taking tiny slices from each salami and putting
them on your sandwiches in a row, so that the slice from salami two follows salami one,
salami three follows salami two, salami 4 follows salami three, and so on, until your last
salami's slice is followed by a slice from salami one again. The number of salamis you
are using is the number of col ums, while the size of the individual slices is called the
stripe width orstripesize. This ensured the taste is about average even if all your sala-
mis are different, and that all salamis are used more or less evenly regardless of which way
you bite the sandwich.

The default stripesize for VxVM is 64 KBytes (which BTW is far too small - TMB would
be a lot better but it is probably best not to stripe at all nowadays).

Striping has become much more common recently due to the advent of storage arrays
that stripe internally, and of both system administrators and database administrators
becoming more familiar with the concepts. However, most of them have forgotten Moore's
law and the problem of mechanics, and therefore get most of their decisions wrong when
it comes to storage layout.

Striping may be one of the most misused features of all RAID systems, so please make
sure you know what you are doing by reading and fully understanding the appropriate
discussion on volume formats beginning on page 137. The short version is this: Striping
was great 20 years ago. Striping is often a bad idea today when you are using JBOD disks
(because Moore's Law has been working against you for 20 years or so). Striping may still
improve your individual performance if your data are on a storage array, but it will invari-
ably do so at the cost of reducing the performance for everybody else who is using the
same storage array. Read more about that later this chapter where we compare volume
formats.

Here is the synopsis and a sample command to create a volume with the striping
feature:

vxassist -g <DGnane> make <vol name> <size> |ayout=stripe [ncol =<x>] ...
vxassist -g adg make avol 1g layout=stripe ncol =5 stripew dt h=2048
vxprint -ghtvgadg

v avol ENABLED ACTIVE 2097152 SELECT avol-01 fsgen
pl avol-01 avol ENABLED ACTIVE 2099200 STRIPE 5/2048 RW
sd adg01-01 avol - 01 adgdl 0 419840 0/0 c0t2d0 ENA

109

Volumes

sd adg02- 01 avol - 01 adgp2 0 419840 1/0 c0t3d0 ENA
sd adg03-01 avol - 01 adgd3 0 419840 2/0 c0t4d0 ENA
sd adg04- 01 avol - 01 adgod 0 419840 3/0 c0t10d0 ENA
sd adg05- 01 avol - 01 adgd5 0 419840 4/0 c0t11d0 ENA

Note the layout in the pl ex line (line 2) is now STR PE, with the values of 5/ 2048 for
the number of columns and the stripe width. Below the STR PE, you can see which column
each subdisk belongs to, e.g. 3/0 means the subdisk belongs to column three and it mapped
into the striped plex at offset O.

MIRRORING

Mirroring originated as RAID-level 1 and was the first layout that created redundant
volumes. As always, in contrast to the original RAID concepts, VXVM will never mirror a
physical disk onto another physical disk. Instead it will allocate subdisks for two plexes
and put two plexes into a volume, resulting in the data to be written into each plex
and thus being redundant. Mirroring can be done by specifying the "mrror" attribute
to the layout subcommand in vxassist. It can also be added after the fact by issuing
vxassi st mrror <vol nane> with an already created volume. Mirroring can be done with
up to 32 mirrors and mirrors can be added and removed transparently while the volume is
online and undergoing I/0. The VXVM allocation library will automatically arrange storage
allocation such that no two mirrors ever share the same disk, as that would reduce both
performance and redundancy of the volume. If you want more than simple redundancy
(that would be equivalent to a number of two mirrors) you can specify a different number
of mirrors using the nmi rror subcommand.
Synopses and sample commands to create a volume with the mirroring feature:

vxassist -g <DGhane> make <vol name> <size> |ayout=mrror [nmrror=<x>]
vxassist -g adg make avol 1g layout=mirror [nmrror=3]

vxassist -g <DGhane> make <vol name> <size> nmirror=<x>
vxassist -g adg make avol 1g nmirror=3
vxprint -ghtvgadg

v avol ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol -01 avol ENABLED ACTIVE 2097152 OONCAT - RW
sd adg01-01 avol -01 adgdl 0 2097152 0 c0t2d0 ENA
pl avol - 02 avol ENABLED ACTIVE 2097152 OONCAT - RW
sd adg02-01 avol - 02 adgd2z 0 2097152 0 c0t3d0 ENA
pl avol -03 avol ENABLED ACTIVE 2097152 OONCAT - RW
sd adg03-01 avol - 03 adgd3 0 2097152 0 c0t4d0 ENA

In this output all plex lines were emphasized in order for you to understand the volume
structure more easily. Since each data plex is a container for the whole volume's contents,
with three plexes you have three containers and accordingly a three-way mirror. Not that
the layout of each plex is GONCAT, because inside the plexes there is neither striping nor
RAID-5.

110

Volume Layouts and RAID Levels

Figure 5-2: Mirroring means more than instance of the data is stored in the
volume. One instance of the data is stored in each data plex.
Each data plex is either striped or concatenated (RAID-5 plexes
in a mirror are not supported, although that could be forced with
a little trickery). In this picture, each row constitutes one concat
plex in a three-way mirror. This is what the above vXprint sam-
ple output displays: three plexes, each plex has a CONCAT layout,
each plex has a single subdisk mapped inside it.

RAID-5

RAID-5 is actually nothing but a stripe, but with a special extra column that holds a lossless
checksum of all data columns. The extra columns is called the parity column, because each
bit in this columns holds information about the parity of the sum of the corresponding bits
in all data column. If any of the data columns fails, then VxXVM can use the parity columns
to regenerate the original data on the failed column by combining all data plus parity using
an XOR operation. The details of this are discussed in The Full Battleship. Suffice it to say
that a parity-protected stripe can lose one column and still work, no matter how many
columns there are. Loss of a second disk, however, will result in loss of volume integrity
and therefore loss of data. The predecessor to RAID-5, RAID-4, used a dedicated column
(or disk) for parity, which led to a bottleneck on multi-threaded writes. RAID-5 overcomes
this bottleneck by distributing the parity information across all columns on a stripesize-
by-stripesize basis.

RAID-5 is a feature that you will not want to use any more once you know how it
needs to be done in a host-based system. No matter which way you look at it, RAID-5 will
be slow on small writes. It will be unreliable after a single disk failure. And it will be slowed
down after a disk failure and made more unreliable because of that failure in addition to
being extra slow. It also needs one disk more than you think it needs, because running
RAID-5 in software without a transaction log is irresponsible, so it loses part of the price
advantage it has against mirroring. In short, we can almost guarantee that after you read
the part of volume layouts you will never even think about deploying RAID-5 in an enter-
prise. It can still make a lot of sense in SOHO or university environments where cost needs
to be as low as possible and uptime is not the most critical factor. But you will not deploy
it in a financial institution if you like your job there.

The number of columns that is given on the command line does include the parity
column but not the additional log plex that is highly recommended for RAID-5 and that
is automatically added unless you prohibit it. So you need at least one more disk than the

1

Volumes

columns specification (one per column plus one for the log, which must not reside on any
of the columns.
Synopsis and sample command to create a volume with the concatenation feature:

vxassi st -g <DGhane> make <vol name> <size> | ayout=raid[5] [ncol=<x>] ...
vxassist -g adg make avol 1g layout=raid5 ncol =5 stripesi ze=256k
vxprint -qghtvgadg

v avol ENABLED ACTIVE 2097152 RAID - raids
pl avol-01 avol ENABLED ACTIVE 2097152 RAID 5/512 RW
sd adg01-01 avol - 01 adgol 0 524288 0/0 c0t2d0 ENA
sd adg02- 01 avol - 01 adgp2 0 524288 1/0 c0t3d0 ENA
sd adg03-01 avol - 01 adgd3 0 524288 2/0 c0t4d0 ENA
sd adg04-01 avol - 01 adgo4 0 524288 3/0 c0t10d0 ENA
sd adg05- 01 avol - 01 adgo5 0 524288 4]0 c0t11d0 ENA
pl avol -02 avol ENABLED LOG 76800 CONCAT - RW
sd adg06- 01 avol - 02 adgoé 0 76800 0 c0t12d0 ENA

You will notice that there are two plexes here. But this does not mean that the volume
is mirrored. Only one of the plexes is marked ACTI VE, while the other one is marked LGG
This means that the plex does not contain user data, but log data, which is just a very
small amount compared to the volume size. Only data plexes count for redundancy, not
log plexes!

But you will notice a few more things: The volume's read policy (column seven of
the first line) is neither SELECT, ROMND, or PREFER but a new policy: RAD. And this is the
same as the data plex's layout. Apart from that, the data plex looks just like a standard
five-column stripe.

112

Volume Layouts and RAID Levels

Figure 5-3: This is what the above vXprint sample output displays. The plex
marked RAID in the vXprint output consists of five columns,
four of which are actually available as net capacity for user data.
One fifth is lost to the distributed parity information which is
spread across all columns in left-symmetric layout (simplified
to just three clusters marked "XOR"). The second plex, which
is marked LOG in the vXprint output is actually a small concat
plex. But it does not hold a copy of the volume data. Instead, the
RAID-5 write method uses it to store the five most recent write
transactions to the volume. This makes recovery faster and the
volume more reliable in special cases..

COMBINING VOLUME FEATURES

Using VXVM it is really easy to combine volume features. For the basic layout parameters,
just pass them in a comma-separated list on the command line. Other variables, like the
number of mirrors, logs, or columns, can be passed as key/value pairs similar to what we've
already been doing when naming disk media (e.g. adg01=c0t 2d0). We will discuss a large
number of such parameters in The Full Battleship of this chapter.

Synopsis and sample command to create a volume with combined features:
vxassi st -g <DGnane> make <vol name> <size> [l ayout =<f eat ure0>, <f eat urel>, .]

vxassist -g adg make avol 100m|ayout=stripe, mrror,log nlog=2 nmirror=3
vxprint -ghtvgadg

v avol ENABLED ACTIVE 204800 SELECT - fsgen
pl avol -01 avol ENABLED ACTIVE 204800 STRIPE 2/128 RW
sd adg01-01 avol - 01 adgol 0 102400 0/0 c0t2d0 ENA
sd adg02- 01 avol - 01 adgp2 0 102400 1/0 c0t3d0 ENA
pl avol - 02 avol ENABLED ACTIVE 204800 STRIPE 2/128 RW
sd adg03- 01 avol - 02 adg0d3 528 102400 0/0 c0t4d0 ENA
sd adg04- 01 avol - 02 adgos 0 102400 1/0 c0t 10d0 ENA
pl avol -03 avol ENABLED ACTIVE 204800 STRIPE 2/ 128 RW
sd adg05- 01 avol - 03 adgd5 528 102400 0/0 c0t11d0 ENA
sd adg06- 01 avol - 03 adgo6 0 102400 1/0 c0t12d0 ENA

113

Volumes

pl avol -04 avol ENABLED ACTIVE LOGONLY CONCAT - RW
sd adg05- 02 avol - 04 adgo5 0 528 LOG c0t11d0 ENA
pl avol - 05 avol ENABLED ACTIVE LOGONLY CONCAT - RW
sd adg03- 02 avol - 05 adgd3 0 528 LOG c0t4d0 ENA

This is the last example of the simple volumes that we will discuss in detail. The plexes
are again emphasized. Note that each plex shows up as a two-column stripe with 128
blocks stripewidth, and there are three data plexes total (the first three). The other two
plexes are of type CONCAT, are very small (528 blocks), and are designated as LOGONLY plexes,
which means they hold a dirty region log. We will deal with an in-depth discussion of logs
in a later chapter.

Figure 5-4: The volume from the above VXprint sample output looks like
this picture. It consists of three plexes, each marked as STRI PE
in the VXprint output. Each of these corresponds to one of the
rows in the right hand part of this picture The last two plexes,
marked LOGONLY in the vXprint output, constitute a tiny, mir-
rored bitmap called the Dirty Region Log, or DRL. The DRL is used
to improve startup behavior after system crashes and is discussed
in the log chapter (chapter 7).

5.4 VOLUME MAINTENANCE

ADDING A MIRROR

Adding a mirror is easy with VxXVM: just tell vxassi st to mirror the volume. This will create
another plex and attach it to the volume. The plex attach action will initialize the new plex
with the volume's contents. If you specify a number of mirrors/plexes to add, that number
of plexes will be added to the volume. It does not matter whether the volume was already
mirrored or not, or if it is a concatenated or striped volume. RAID-5 volumes can not be
mirrored this way, at least not in a single vxassi st command.

Synopsis and sample command to add a mirror to a volume

114

Volume Maintenance

vxassist -g <DGhame> mirror <vol name> [nmirror=<x>]
vxassist -g adg mirror avol nmirror=3 # will add three mrrors

REMOVING A MIRROR

Removing a mirror is almost as simple as adding one. It just requires passing an extra com-
mand word to vxassi st, namely remove mrror instead of mirror. You can also specify a
number if mirrors to the remove command, but this will not work as expected: while when
adding mirrors the nmi rror=<x> parameter specifies the number of new mirrors to add, in
the case of removing it specifies how many mirrors are to remain!

Synopsis and sample command to remove a mirror from a volume

vxassi st -g <DGhane> renmove nmirror <vol nane> [nmirror=<x>]|
vxassist -g adg remove mrror avol nmirror=3 # will |eave three mrrors

ADDING A LoG

Just like mirrors, you can add a log to a volume by simply passing the right parameter
to vxassist. The keywords here are addl og, nl og=<x>, and | ogt ype={dco| drl}. The nlog
parameter defines the number of logs to add to the volume, and the | ogt ype parameter
defines whether it is going to be a DRL (dirty region log) or DCO (data change object)

We have not discussed what each type of log is or does. There are various kinds of
logs., and they are discussed in chapter 7 beginning on page 173. Because this book is also
recommended for looking up frequent procedures we chose to put the part about manag-
ing logs here where it belongs, and explain it later to those readers who prefer to read the
book as a technical training guide.

Synopsis and sample command to add a log to a volume

vxassist -g <DGnhane> addl og <vol nane> [nl og=<x>] [l ogtype={dco|drl}
vxassist -g adg addl og avol nlog=2 # will add two | og plexes

REMOVING A LoG

Like a mirror, a log can be removed by specifying remove |og instead of addl og to the
vxassi st command. And as in the case of the mirror, if you also pass a number of logs,
then this number does not specify the number of logs to be removed, but the number of
logs to remain in the volume

|

Synopsis and sample command to remove a log from a volume

vxassist -g <DGnane> renove |og <vol nane> [nl og=<x>] [l ogtype={dco|drl}
vxassist -g adg remove | og avol |ogtype=dco # will remove one DCO | og

115

Volumes

GROWING A VOLUME WITH A FILE SYSTEM

Growing a volume that has a uf s or vxf s file system on it requires two steps: first, the data
container (i.e. the volume) must be resized so it can hold the desired larger amount of file
system blocks. After this is done, the file system also needs to be resized to make use of the
increased container size. It would not make a lot of sense to grow the container but have
the file system still report the same old size. The superblock needs to be updated to reflect
the new size, and in the case of uf s, new cylinder groups must be created and initialized.
In the case of vxfs, the newly gained free space must be incorporated into the free extent
list so that it can subsequently be allocated for files. There are convenient commands to
grow a uf s or vxf s file system, so none of this has to be done manually.

The command to grow a volume that has a file system on it is one layer above
vxassi st. It is a tool that calls vxassist to resize the volume and then for vxfs calls
f sadm(file system administration) or for uf s calls fusr/1ib/fs/uf s/ nkfs - G(the - Gflag is
undocumented) to grow the file system. The name of the tool is vxresi ze and it takes the
volume name (and the ubiquitous - g <DG>) and a VxVM size specification. Alternatively, you
can specify a size increment by prepending the number with a plus (+) sign. For uf s it does
not make any difference whether the file system is mounted or not. You can do it offline
as well as online. For vxfs however, the file system needs to be mounted. Why is that the
case? Well, because of the rather simple file system structure and limited capabilities of uf s
there exists a simple standalone command that can modify a uf s's internal data structures
without risk. On the other hand, the vxfs file system is highly sophisticated and complex.
While in a uf s file system the file system metadata (like free block bitmap, inode table etc.)
is static and its locations are fixed, vxfs allocates all file system metadata dynamically, as
files (yes, vxfs metadata are files, too. Read all about it in the "point-in-time copies" (page
233) and "file system" (page 434) chapters). In order to allocate metadata for managing the
extra volume space the file system driver must be used for that volume, so that (meta data)
files can be modified. This means that the volume needs to be mounted.

Synopsis and sample command to grow a volume and its file system

vxresize -g <DGhane> <vol nane> <[+] si ze>
vxresize -g adg avol +2g # enlarge avol plus file systemBY 2g
vxresize -g adg avol 20g # enlarge avol plus file system TO 20g

GROWING A VOLUME WITHOUT A FILE SYSTEM

Growing a volume without a file system, e.g. before putting a new FS onto it or if you are
using database raw device access, can be done with a vxassi st command. There are two
subcommands to vxassi st for growing: growby and growt o, whose meanings should be
immediately obvious. For gr owby you supply an increment, while for gr owt 0 you supply the
final size of the volume.

Notable fact: As soon as the command is executing it is safe to use the full new size
of the volume. In the case of a redundant volume VXVM will still resynchronize the new
extents, but that should not stop you from feeling comfortable using the new space. It is
just as safe and redundant as the rest of the volume. If you find this hard to believe, look

116

Volume Maintenance

up RDWRBACK synchronisation in the index and read all about this interesting fact.
Synopsis and sample command to grow a volume without file system

vxassi st -g <DGhane> grow by|to] <vol name> <size>
vxassist -g adg growby avol +2g # enlarge avol BY 2g
vxassist -g adg growto avol 30g # enlarge avol TO 30g

SHRINKING A VOLUME WITH A FILE SYSTEM

Shrinking a volume with a file system on it only works with vxfs, not with uf s. The action is
in principle the same as for growing, but in reverse order and of course direction. First, the
file system is told to shrink to the desired size using f sadm - b. Next, the volume is shrunk
using the appropriate vxassi st shrinkto orvxassist shrinkby command. This vxassi st
command must be run with the - f flag (force) because shrinking a container that contains
a file system could result in loss of data. Of course vxresize is again the tool of choice, as
it will do both in a single step with less fuss.

Synopsis and sample command to shrink a volume and its file system

vxresize -g <D&hane> <vol nane> <[-]si ze>
vxresize -g adg avol -2g # shrink avol plus file systemBY 2g
vxresize -g adg avol 10g # shrink avol plus file systemTO 10g

SHRINKING A VOLUME WITHOUT A FILE SYSTEM

Shrinking just the volume is easy: just issue the appropriate vxassist shrinkto or
vxassi st shrinkby command. You must use the - f option to force the operation, however.
This is because all volumes created by vxassi st are of usage type fsgen, which stands
for file system generic. This is how VxVM finds out that it is meant for a file system
and that it's not, for example, the root disk's swap volume which would not need to be
resynchronised if re-opened after a crash etc.

In other words, VXVM will have to assume that you are using the volume for a file
system and it wants you to think twice before you truncate the container that hold it. Of
course, if you really know what you're doing then adding - f should not be a big extra effort.
And if you really don't know what you're doing, then you are doomed anyway if they let
you play with VxVM. No offense intended :)

Synopsis and sample command to shrink a volume without file system
vxassist -g <D&hane> shrink[by|to] <vol nane> <size>

vxassist -g adg shrinkby avol 2g # shrink avol BY 2g
vxassist -g adg shrinkto avol 10g # shrink avol TO 10g

117

Volumes

GROWING OR SHRINKING JUST THE FILE SYSTEM

For ufs there is the command /usr/shin/growfs, which is a shell script that
calls [usr/lib/fs/ufs/nkfs -Gto grow the file system. You can call the latter directly
or use growf s as you like. Shrinking a ufs file system is not possible, but if necessary then
you can first convert it to a vxfs using /opt/VRTSvxf s/ shin/vxfsconvert, linked to by
[opt/ VRTS! bi n/ vxfsconvert, and then shrink the vxfs file system in the way outlined
below. The latter may not work well in older versions of VXVM because an important data
structure for vxfs gets placed way back towards the end of the volume from where it
unfortunately cannot be relocated. So it is sometimes not possible to shrink the volume sig-
nificantly. It is probably the best to try it out with the software you are actually running.

Forvxf s there is the tool/ opt / VRTSvxf s/ sbi n/ f sadm linked to by/ opt / VRTS/ bi n/ f sadm
which can resize a vxf s file system in both directions: It is called with the - b flag and either
the new size or the relative change as shown in the example below:

vxassi st make avol 1g
nkfs -Fvxfs [dev/vx/rdsk/ adg/ avol
version 7 |ayout
2097152 sectors, 1048576 bl ocks of size 1024, log size 16384 bl ocks
largefiles supported
nkdir /vxfs
mount /dev/vx/dsk/adg/avol [vxfs
mount: /dev/vx/dsk/adg/avol is not this fstype # Cops, need to specify vxfs!
mount -F vxfs /dev/vx/dsk/adg/avol /vxfs # That's better!
#df -h [vxfs
Fil esystem size used avail capacity Mounted on
[dev/vx/dsk/adg/avol 1.0G 17M 944M 2% Jvxfs #1 Gg!
vxresize avol +1g # Enlarges volume and then file system too
vxprint -v avol
TY NAME ASSCC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
v avol fsgen ENABLED 4194304 - ACTI VE

Remember that VXVM sizes are always blocks if not otherwise given. So the above
4194304 blocks are exactly 2GB, not 4GB (Solaris disk blocks are 1/2KB each).

#df -h [vxfs

Fil esystem size used avail capacity Mounted on

[dev/vx/dsk/adg/avol 2.0G 18M 1.9G 1% Jvxfs #2 Gg!

fsadm-b 1g /vxfs # W will have a 1Gfile systemon a 2G vol une!

UX vxfs fsadm INFQ V-3-23586: /dev/vx/rdsk/adg/avol is currently 4194304 sec-
tors - size will be reduced

fsadm-b +1g /vxfs # Back to 2@ Just to try out all the ways...

UX vxfs fsadm INFQ V-3-25942: [dev/vx/rdsk/adg/avol size increased from
2097152 sectors to 4194304 sectors

fsadm-b -512m/vxfs # Down to 1.5G

UX vxfs fsadm INFQ V-3-23586: /dev/vx/rdsk/adg/avol is currently 4194304 sec-
tors - size will be reduced

118

Volume Maintenance

#df -h fvxfs

Fil esystem size used avail capacity Munted on

[dev/vx/dsk/adg/avol 1.5G 17M 944M 2% [vxfs # 1.5 G ¢!

vxprint -v avol

TY NAME ASSCC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
v avol fsgen ENABLED 4194304 - ACTI VE

vxassist -f shrinkto avol 1g+512m# Cool way of specifying volune size!!
vxprint -v avol

TY NAME ASSCC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
v avol fsgen ENABLED 3145728 - ACTI VE

#df -h /vxfs # File systemis unchanged by vxassist shrink!

Fil esystem size used avail capacity Munted on

[dev/vx/dsk/adg/avol 1.5G 17M 1.4G 2% [vxfs

DISADVANTAGES OF USING VXRESIZE OVER VXASSIST AND FSADM

There are two slight disadvantages to using vxresi ze instead of issuing separate com-
mands for vxassi st and fsadm yourself: One is limited storage allocation. The vxassi st
command can be made to allocate very specific storage classes in a very fine-grained way.
For instance, you can tell it to stripe across enclosures and mirror across controllers, to use
only certain controllers or trays, or to exempt any of these objects and more. The vxr esi ze
command, while it ultimately calls vxassi st itself, is not able to parse all of this storage
allocation information. It is limited to a small subset of storage allocation. So while you
can always use vxresize to shrink a volume you should use it for growing a volume only if
you do not care where your subdisks will reside in the end. If you do, then it is better to
use the combination of vxassi st and f sadminstead.

If you wonder what vxresi ze does if the file system and volume sizes differ at the
beginning, e.g. because someone messed with vxassi st or fsadm then the comforting
answer is: it fixes the situation by making them both the same size. In other words, you
can use vxassi st to allocate storage with more control over the allocation. You can do
so even if you forgot how to change the file system size, because instead of subsequently
calling f sadmyou can follow up with vxresi ze, which will then just adapt the file system
if the volume already has the right size.

119

Volumes

x
B

%0 e e
o Does e & wese o8 0088 608 8 008G B8 eese o
® ssesce e so e

The Full Battleship

5.5 TUNING VXASSIST BEHAVIOR

It is sometimes desired to specify what parts of the storage equipment we want vxassi st
to use when allocating volume space. There are several keywords to vxassi st that we can
use on the command line to make vxassi st do exactly what we want. In particular, you
can control which disks or LUNs you want to use, which enclosures (storage arrays), which
trays inside the storage array, and which controllers. You can also negate any of these cri-
teria. You can specify whether to mirror across controllers, trays, or enclosures. And you can
specify allocation of volume logs just like allocation of data plexes. The secret to this fine
tuning lies in a few variables that can be passed to vxassi st and that control its behavior.
Let's go through them one at a time:

5.5.1 STORAGE ATTRIBUTES — SPECIFYING ALLOCATION
STRATEGIES

Allocation can be modified by specifying the alloc=... variable on the vxassist command
line. alloc= must be followed by a single shell-word containing a list of all entities which
we want to allow vxassi st to allocate from. The shell word can consist of just a single
disk name, a comma-separated list of disk names, or a quoted string of space-separated
disk names.

Synopsis and sample of a vxassi st command with storage specification:

vxassi st make <vol nane> <size> [l ayout =<vol une features>] [alloc=<disklist>]
vxassi st make avol 1g layout=stripe al |l oc=adg03, adg04, adg05

The latter can also be written without the "al | oc=" keyword as shown below. This is a
short form and you are free to use it, but it helps to remember that logically we are supply-
ing an allocation information. Why does that help? Because later, when we remove objects
instead of creating them we can also pass such allocation information. However, this will
lead to those disks passed on the command line to be excluded from deletion, rather than
specified for deletion. This is more understandable when you are aware that what you pass
to vxassi st is a list of storage objects where virtual objects are to reside on (i.e. allocated)
rather than just a list of disks to "do something" with. That said, the following command

120

Tuning vxassist Behavior

line is equivalent to the previous one:
vxassi st make avol 1g layout=stripe adg03 adg04 adg05

Will specifying a storage allocation enforce VXVM to use all the specified disks? l.e. if
you tell vxassi st to create some small volume, but pass it ten LUNs as a storage alloca-
tion, will it then magically allocate one tenth of the storage from each of the LUNs passed
on the command line?

No, it won't.

The storage allocation limits VxVM's normal allocation strategy to the given subset of
all available storage. If the DG contains ten empty LUNs of ten GB each and you create a
concat volume of 20GB, then VxVM will use exactly two LUNs out of the available ten to
create the volume. If you give it a storage allocation of five disks, it will pick any two of
the five that you passed. If you pass exactly two LUNs, it will of course pick those two. If
you pass it only one LUN, the command will fail because not enough storage can be found
in the storage allocation you gave.

ADDING AND REMOVING A MIRROR ON A SPECIFIC Disk

Just like you can control the storage allocation when creating a volume you can also con-
trol storage allocation when creating any other virtual object, e.g. another data plex, or a
log plex (more about log plexes later). It works the same way. To add a mirror to a volume
using specific disks you specify them on the vxassist command line:

Synopsis and samples of a vxassi st command with storage specification:

vxassist mirror <vol name> [al | oc=<di skl i st >]
vxassist mrror avol alloc=adg00, adg0l, adg02
vxassist mrror avol adg00 adg0l adg02

Or you could specify to mirror across enclosures by this command:
vxassist mrror avol nirror=enclr

To remove a mirror that resides on a certain disk you can also use storage allocation,
but you need to revert the logic. Remember what we said above: Since it is an allocation
that means we specify the LUNs that will contain objects after the command has finished.
To remove a mirror from a specific disk, you need to use the negation operator "!" in front
of the storage object.

Synopsis and samples of a vxassi st remove mirror command with storage specifica-
tion:

vxassi st remove nmirror <vol name> [al | oc=! <di sk>]

vxassist remove mirror avol alloc=!adg00

vxassist remove mrror avol !adg00

vxassist remove mirror avol \!adg00 # If bash or a csh-variant is used

121

Volumes

If you are using a csh-derived shell like bash, zsh, tcsh, or ¢sh, then the command
will most likely fail with a cryptic "event not found" error message. This is because these
shells use the bang-operator ("!") to recall previous command lines, and unless you used
a command line that started with the name of the disk (adg00 in this case) the shell will
complain. The solution is to Use A Real Shell™ (/ bi n/ ksh) or to escape the bang operator
with a backslash or use single- or double-quotes around the storage allocation.

ADDING AND REMOVING A LOG ON A SPECIFIC DIsK

Of course you can also use storage allocation with any other object, for creation as well as
for deletion (see above). For instance, logs can be put onto a specific LUN using the same
approach when adding them after the volume has been already created.

Synopsis and samples of a vxassi st addl og command with storage specification:

vxassist addl og <vol name> [al | oc=<di skl i st>]
vxassist addlog avol alloc=adg02
vxassist addlog avol adg02

And again the same is true for removal of specific logs.

Synopsis and samples of a vxassist remove |og command with storage specifica-
tion:

vxassist remove |og <vol name> [al | oc=! <di skl i st >]

vxassist remove | og avol alloc=!adg02

vxassist remove | og avol !adg02

vxassist remove |og avol "!adg02" # For bash users

There is also a possibility to specify storage allocation for data plexes and log plexes in
the same command, but this makes use of the rather complicated suboption -0 ordered
of vxassist. It is rarely used and probably not very useful for you, so here is just one
example that creates a mirrored volume with data plexes on adg01 and adg02, plus a dirty
region log on adg04:

vxassist -o ordered make avol 1g layout=nirror,|og al | oc=adg01, adg02
| ogdi sk=adg04

MORE STORAGE ALLOCATION VARIABLES

As we said before there are even more things that you can specify to direct storage allo-
cation. You can set or exclude controllers, enclosures, trays, and targets. The following
example shows how to mirror an existing volume avol using only LUNs that are attached
to controllers ¢4 and ¢9, will exclude target c4t56 but specifically allow LUN c4t56d9:

122

Tuning vxassist Behavior

vxassist mrror avol ctlr:c4,c9 alloc=!c4t56,c4t56d9

To find out all about the possible criteria to allocation ask vxassist for an up-to-date
explanation pertaining to the version you are running:

vxassist help alloc
Allocation attributes for vxassist:
Usage: vxassist keyword operands ... [!]alloc-attr ...
or: vxassist keyword operands ... wantalloc=mrror-attr[,attr[,...]]

di sk Specify the naned disk in the disk group.

dm di sk Specify the naned disk in the disk group.

da: devi ce Specify a disk, by disk device (e.g., da:cOt2d0).
ctlr:controller Specify a controller (e.g., ctlr:cl).

target: SCSI-target Specify a SCSI target (e.g., target:c0t2).

ctype: driver-type Specify a disk controller type (e.g., ctype:end).
ctype: ssa Speci fy SPARCserver Array controllers.
driver:driver-type Specify a disk driver type (e.g., driver:sd).

NOTE: wantal | oc indicates desired, but not required, restrictions.

NOTE: 'alloc-attr requests that the specified storage should NOT be used.

NOTE: for allocation attributes of the formattr:value, value can be ,sanme
to indicate that allocations should use disks with the sane value for
the attribute (e.g., ctlr:same requests use of the sane controller).

SPECIFYING THE NUMBER OF DATA PLEXES (MIRRORS)

There is a simple parameter that you can pass to vxassi st that lets you adjust the number
of data plexes that our volume will have. The parameter is called nmirror and is used in a
similar way to al | oc, | ayout etc. You just specify the number to vxassi st. For instance:

vxassi st make avol 1g layout=mirror nmrror=2
will create a 2-way mirror. A five-way mirror can be created by this command:

vxassi st make avol 1g layout=mirror nmrror=5

Up to 32 data plexes can reside in any volume. But remember that for reasons of both
performance and redundancy no disk may ever be used for two different data plexes of the
same volume, nor for two different columns of a stripe. So if you really were to create e.g.
10-way stripe across 5 columns, then your DG would have to have 10 times 5 equals free
space available on fifty different disks. Otherwise you get the famous error message:

VXVM vxassi st ERROR V-5-1-435 Cannot al | ocate space for <XXXXXXXXX> bl ock vol ume

123

Volumes

This error message usually comes from lack of independent disks rather than actual
lack of space.

SPECIFYING THE NUMBER OF LOG PLEXES

The number of dirty region log (DRL) plexes or data change object (DCO) log volumes is
defined using the nl og variable, just like the nmirror variable defines the number of data
plexes:

vxassi st make avol 1g layout=mirror,log nmirror=4 nlog=3

SPECIFYING THE NUMBER OF STRIPE COLUMNS

The number of stripe columns is set using the ncol variable. If you do not explicitly set the
number of columns then vxassi st will calculate and use a default number based on the
number of disks in the DG. If the volume is not mirrored then the number of columns will
be at most half the number of disks in the DG (so the volume can later be mirrored). If it is
mirrored then it will be calculated to fit onto the free disks in the DG. The actual number
of columns will be between a minimum and a maximum value which you can inquire using
the command vxassi st hel p showattrs:

vxassist help showattrs

#Attributes:

['ayout =nomirror, nostripe, nomrror-stripe,nostripe-mrror,nostripe-mrror-
col ,nostripe-mrror-sd

noconcat-mirror, nonirror-concat, span, nocontig, rai dsl og, nor egi onl og, di skal i gn, no
storage

mrrors=2 col ums=0 regionl ogs=1 rai d5l ogs=1 dcm ogs=0 dcol ogs 0

aut ogr ow=no destroy=no sync=no

mn_col ums=2 nax_col ums=8 # The default range for the "ncol" val ue

regi onl ogl en=0 regi onl ogmapl en=0 rai d5l ogl en=0 dcm ogl en=0 | ogt ype=r egi on
stripe_stripeunitsize=128 raid5_stripeunitsize=32

stripe-mrror-col -trigger-pt=2097152 stripe-mrror-col-split-trigger-pt=2097152
uset ype=fsgen di skgroup= conment="“ fstype=

sal _user=

user=0 group=0 node=0600

probe_granul arity=2048

mrrorgroups (in the end)

alloc=

want al | oc=vendor : confi ne

mrror=

wantnirror=

nirrorconfine=

want m rror confi ne=pr ot ecti on

stripe=

want stri pe=

124

Tuning vxassist Behavior

t npal | oc=

Let us not get into too much detail about these variables. Suffice it to say you can
change these defaults by entering them into the file / et ¢/ def aul t s/ vxassi st.

SPECIFYING THE STRIPESIZE

The size of a stripe unit, i.e. the number of blocks after which vxi 0 jumps to the next
column in a stripe, can be set using a large number of keywords. You can find them all by
using the UNIX command strings -a on the vxassi st executable and then pick the one
you like best. Being a lazy UNIX person | prefer the shortest form, stwi d:

strings -a /opt/VRTS bin/vxassist | egrep ""st.*wid"
stwid

stwidth

st_width

stripew dth
stripe_width
stripeunitwidth
stripe_stwd
stripe_stwdth
stripe_st_width
stripe_stripeunitwidth

So let's first find out what the default stripesize is, and then make a striped volume
with a reasonably large stripesize (we discussed the doubtful merits of small stripesizes
before)

vxassist help showattrs | grep stripe_

stripe_stripeunitsize=128 rai d5_stripeunitsize=32 # 128 bl ocks is way too small!

vxassi st make avol 1g layout=stripe ncol =6 stwi d=2048 # 1MB i s reasonabl e
Actually you can leave the | ayout keyword away in many cases. It's just a way of

specifying some features with their default values. E.g. if you want to create a two-way

mirrored stripe with one dirty region log and the default number of columns then you

might specify it using this vxassi st command line:

vxassist make avol 1g layout=mrror,|og,stripe

But if you need something special, like three-way mirroring, two logs, and four col-
umns, then instead of writing

vxassi st make avol 1g layout=nirror,log,stripe nnirror=3 nlog=2 ncol =4
it is easier to just specify the individual features like this:

vxassi st make avol 1g nmrror=3 nlog=2 ncol =4

125

Volumes

Likewise, if you want a volume with a striped layout with the default number of col-
umns and a stripesize of 2048 blocks you could write:

vxassi st make avol 1g layout=stripe stw d=2048

or you could just make vxassi st imply that you want a stripe by issuing this com-
mand:

vxassi st make avol 1g stw d=2048

Specifying a stripesize is sufficient because there is no other way for vxassist to satisfy
your request for a certain stripesize but to create a striped layout.

5.5.2 SKIPPING INITIAL MIRROR SYNCHRONISATION

When a volume is created manually then the first state that this volume will have is the
EMPTY state. The EMPTY state means that VxXVM has no idea about the validity of the data
inside the plexes. They might be valid (e.g. if you were a very clever person) or they might
be totally uninitialized (which is the more normal case). It may be a bad thing to use
uninitialized data, so a volume that has an EMPTY state cannot be started without extra
precautions. These precautions being to check if the volume is redundant. If it is not, it can
indeed be started. But if it is indeed redundant, then all the plexes will first be synchronised
so they all hold the same data. But while this precautionary measure is extremely safe it
is not optimal, because it is usually unnecessary. We will learn both why it can be skipped
and how to skip it a few lines from here.

The vxassi st command will always try to give you a reliable, working volume. So
vxassi st will by default create the volume, then for redundant volumes start it by initiat-
ing a synchronisation process for the volume. The volume can be used immediately, but
in the background a kernel thread will continue synchronisation until all of the volume is
synchronised.

You can modify this behavior simply by passing a different initial state to the vxassi st
command. For instance, you can tell it to make the volume ACTI VE immediately, without
synchronisation:

vxassi st make avol 1g nmirror=3 init=active

This will create a three-way mirror of 1GB without doing any synchronisation. You
could also choose to zero out all data on the plexes, which is a faster way to start a new
RAID_5 volume (because the parity of a stripe containing just zeros is also zero, the parity
information need not be calculated if you initialize with zero) . The initial state to pass to

vxassi st in this case is zero:

vxassi st make avol 1g nmirror=3 init=zero

126

Tuning vxassist Behavior

This will successfully create a three-way mirror of 1GB without doing any synchroni-
sation. You can use zero initialization with all layout types. It is not limited to RAID-5 or
mirrored volumes; you can even use it to initialize a concat volume.

Of course you can also specify that vxassi st not initialize your volume at all, but leave
it in an EMPTY state. In this case, you pass none instead of zero or active to vxassi st :

vxassi st make avol 1g [nnirror=x] [ncol=y] init=none

There is much more on synchronisation mechanisms starting on page 380 in the
troubleshooting chapter.

5.5.3 CHANGING THE LAYOUT OF A VOLUME

Changing a volume's layout on the fly, while user 1/0 is active on it, is probably one of
the coolest demonstrations that can be done with VXVM. Unfortunately many users do
not trust the relayout feature and would rather not use it in production environments.
Whatever their reasons may be - they might just not believe such a thing is possible - in all
but the most exceptional cases relayouting a volume works really well. It can be interrupted
(even by a system failure, e.g. panic or power loss) and will automatically restart upon
volume start. It can even be stopped before it is done, and reversed to restore the original
layout. All this is possible while the volume is active and undergoing user-1/0! But while
the relayout engine in the back end is a truly remarkable feature (although parts of its
implementation could be improved) the parameter processing for the vxassi st rel ayout
command is rather poorly implemented. For instance, even in versions of VXVM that used
to search through all DGs to find the specified object, relayout was the one command that
would not do it and instead required specification of the DG. Then, if your target layout
features striping, the number of columns is not initialized from the default as it is when
creating a volume. The ncol parameter appears to be uninitialized, so it is in many cases
too large for the DG and the command fails. If the target layout features mirroring, the
result will always be a layered volume even if you explicitly specified a non-layered layout.
This is particularly ridiculous because the same command (vxassi st) can then be used to
convert the result to what you really wanted (a non-layered volume; you will learn more
about layered and non-layered volumes soon). And while relayout can actually generate
any kind of volume features it will refuse to work unless the internal layout of a plex
actually changes. For instance, if you covert from a concat to a nirror and vice versa,
relayout will complain that this is not a relayout operation (the mapping inside the plex
does not change, but a plex is merely added or taken away). It will then try to convert the
volume between layered and non-layered, which will also fail because this is not what was
requested. So the command ultimately fails.

But if you relayout from concat to some other plex mapping, like stripe or RAID-5,
and then use vxassi st relayout to create your desired layout (mirrored concat), it will
work just fine.

To sum it up: vxassi st relayout is powerful, but very picky. But anyway, it is indeed a
nice feature, especially when you finally learned to master it. So let's begin with a concat
volume:

127

Volumes

vxassi st make avol 1g [layout=concat] # create our base vol ume
vxassist relayout avol |ayout=stripe ncol=4 stwi d=2048 # takes sone tinme

(avol is now a striped volume!)
vxassist relayout avol |ayout=stripe ncol =2 stw d=1024
(avol is now just 2 columns wide, with 1024 blocks stripesize)
vxassist relayout avol |ayout=nirror,concat
(avol is now a mirrored layered volume; a concat-mirror)
vxassist relayout avol |ayout=raid, nolog ncol =4 stwid=128

... and so on. Depending a little on the hardware it takes roughly one minute per GB
of volume size, just like synchronizations and other low-level VxVM 1/0. Such 1/0 is always
throttled to pause for several milliseconds between 1/Os in order not to overload the
machine. There is actually no way to make that pause disappear. You can only increase it.
You can also increase the size of the individual 1/Os but in all the tests that we did over
the years with several versions of VxXVM it never did speed up the volume operations. Your
mileage may vary.

VXRELAYOUT START / REVERSE / STATUS

While a relayout process is running you can inquire its status, pause it, restart it, or reverse
it. And while it is running in reverse, you can do the same again, practically jumping to
and fro between two layouts. Not that it makes a lot of sense, but it really is a cool demo,
at least to those who still have to manually allocate partitions for use with Solstice Disk
Suite (SunVM) or some Linux LVM.

Synopsis and example of the command syntax for handling relayout tasks:

vxrel ayout status <vol nane>

vxrel ayout status avol

vxassi st make avol 1g |ayout=concat

vxprint -q -ht -gadg avol # -q to suppress headers, -ht for nicer output

v avol ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol - 01 adgdl 0 2097152 0 c0t2d0 ENA
vxassist relayout avol ncol =3 stw d=2048 &
[1] 21756
vxtask list
TASKID PTID TYPE/STATE ~ PCT PROGRESS

220 RELAYQUT/ R 10. 05% 0/ 4194304/ 419431 RELAYQUT avol adg

vxrel ayout status avol
CONCAT --> STRIPED, colums=3, stwidth=2048

128

Tuning vxassist Behavior

Rel ayout running, 15.00% conpl et ed.
vxtask abort 220 # The relayout task can only be found using "vxtask |ist"
VXWM vxrel ayout | NFO V-5-1-2288 Aborting readl oop (task 220)
VXVWM vxrel ayout | NFO V-5-1-2291 Attenpting to cleanup ...
VXWM vxassi st ERROR V-5-1-2302 Cannot conpl ete rel ayout operation
[1] + Done(7) vxassi st relayout avol ncol =3 stwi d=2048 &
vxrel ayout status avol
CONCAT --> STRIPED, colums=3, stwi dth=2048
Rel ayout stopped, 20.00% conpl et ed.
vxrelayout start avol & # restart the relayout process
vxrel ayout status avol # and see howit's coning al ong
CONCAT --> STRIPED, colums=3, stwi dth=2048
Rel ayout running, 25.00% conpl et ed.
vxtask |ist
TASKID PTID TYPE STATE PCT PROGRESS
224 RELAYQUT/ R 44. 67% 0/ 3985408/ 1780288 RELAYQUT avol adg
vxtask abort 224 # abort the poor relayout yet again
VXWM vxrel ayout | NFO V-5-1-2288 Aborting readl oop (task 224)
VXVWM vxrel ayout | NFO V-5-1-2291 Attenpting to cleanup ...
[1] + Done(7) vxrel ayout start avol
vxrel ayout reverse avol # reverse the relayout process, go back to original
vxrel ayout status avol # and see howit's coning al ong
STRIPED, colums=3, stwidth=2048 --> CONCAT # going back to original Iayout
Rel ayout running, 80.08% conpl et ed.

If you want to sleep really bad tonight, then you can try to parse the output of

vxprint -rt for a volume that is currently undergoing a relayout operation. But be
warned: it is not a pretty sight!

129

Volumes

5.6 METHODS OF SYNCHRONISATION

Whenever there is more than one data plex (container for one instance of the volume's
data) in a volume then there is at least a theoretical possibility that the contents of the
plexes differ. They may differ for any several reasons, some of which are more, some less
likely. Let's look at some of the more unlikely ones first:

- Bit rot, i.e. the unintentional flipping of bits on the medium, can be considered
unlikely, although it does indeed happen occasionally. Disks are typically very well
protected against this using Reed-Solomon code error checking.

- The probability for a bad data transfer for current disks is about 1x10-14 or one
in 100,000 billion. This sounds like an extremely low probability, but let's see how
quickly this would happen if you were to stream data from a disk 24 hours a day
at a little over 60 MB/sec: 60 MB per second is 60 times 1024 times 1024 times 8
bits per second, or 503,316,480 bits. Let's round off all those numbers. 500,000,000
times the number of seconds per day (86400) is 43,200,000,000,000 or 4.32x10E13
bits/day. In other words it takes less than three days for an unrecoverable error to
reach the host if the disk is on full blast. Fortunately for us while the error may not
be recoverable but it still is detectable, so our host will just do a retry of the read
request and everything should be fine. Similarly, if the disk writes a block and finds
that it did not verify, then it will retry the write/verify cycle until the block has been
correctly written, and/or it will revector the block to somewhere else.

- Someone using dd or so to write on the raw device that a subdisk resides on is also
rather unlikely, although there are companies where this statement is debatable.
So if all those reasons are so unlikely, then what are the likely reasons for different
contents in plexes of the same volume? The likely reasons are:

- The volume has not been initialized yet (this is very likely; it happens with every
redundant volume we ever created).

- A new plex is just being added to the volume and therefore has not been initialized
yet (this happens every time we add a mirror).

- A system failure has interrupted one or several writes to the volume (this happens
whenever power is lost, the machine panics, or other rather low-level errors occur).

All of these cases are handled except for someone accessing the raw device below a
subdisk. There is nothing that keeps anybody from doing this, and it's very hard to tell it
happened. The first two (unlikely) cases are handled by hardware and OS mechanisms, the
case of the raw device access using dd or some other tool would wreak havoc even if it
was a partition and not a volume. The other three, the more reqular cases, are handled very
elegantly within the VxVM state machine.

There is one case left and that is if someone mounts a partition instead of a volume

130

Methods of Synchronisation

from an encapsulated and mirrored boot disk read-write. That is the one case where the
administrator must be really careful about. That is and must remain a no-no until this
chapter as well as the troubleshooting part is fully understood. Because you will learn how
to modify VXVM's object states to make the VxVM state machine work for you.

Let us now return to the three cases that we admitted are relatively frequent:
uninitialized volumes, uninitialized plexes, and plexes with open writes.

5.6.1 Atomic Copry

Whenever a new data plex is attached to a volume that already has a valid data plex, the
new plex is first of all set to write-only mode. Being in write-only mode sounds utterly
useless at first (after all, what would you do with data that you can write, but not read)?
But in fact it is a very clever way to make sure that the volume can remain online while
the plex is being synchronised. Being in write-only mode the new plex actually receives
both synchronisation data from an existing plex and actual user-I/0. It is, from a writing
standpoint, already active. If it was not active in write-only mode, then we would either
have to stop I/O to the volume while the synchronisation is taking place. This would force
us to take the volume offline. Or we would have to remember all the extents that have been
written to since the synchronisation started, and resynchronize them later. But then while
we are resynchronizing the changes, new changes may come in. We would be caught in a
circle with an unknown end.

We will now start with an unmirrored concat volume and watch as a new plex is being
attached. You can observe the write-only flag (W) in the output of vxprint:

vxassi st make avol 1g # Create our well-known 1 GB concat vol une
vxprint -q -htv -g adg # Look at it: volume, plex, subdisk, nothing fancy

v avol ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol -01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01- 01 avol - 01 adgol 0 2097152 0 c0t2d0 ENA

vxassist mrror avol & # Allocate a new plex and attach it in background
vxprint qhtvgadg # Look at the volume. See the WD node to the right!

v avol ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol -01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01- 01 avol - 01 adgol 0 2097152 0 c0t2d0 ENA
pl avol - 02 avol ENABLED TEMPRMSD 2097152 CONCAT - W
sd adg02- 01 avol - 02 adgp2 0 2097152 0 c0t3d0 ENA

vxtask list # This conmand shows all VxVM kernel threads
TASKID PTI D TYPE STATE PCT PROGRESS
160 ATCCPY/ R 09. 86% 0/ 2097152/ 206848 PLXATT avol avol - 02 adg

Look at the output of the vxtask |ist command above. From left to right you see: the
task 1D, which you can use to vxtask abort, vxtask pause, or vxtask resume the thread.
The next field would be the parent task ID, but since this is not a compound action con-
sisting of several sub actions it is empty. Next is type and state of the thread. The type is
interesting: it is shown as ATCOPY, with a state of R. We will get back to that type very soon,
but let's jump ahead for now. The R stands for running, which is what the task is doing (the

131

Volumes

status P means paused, and K means killing the thread). The percentage is how much of
the task has already been accomplished, and progress is basically the same, but given not
in percent but as a tuple of "first block / last block / current block". The rest of the line is
interesting because it actually tells us what action is happening: PLXATT avol avol - 02 adg
means that a plex is being attached to volume avol, the plex's name is avol - 02 and the
activity happens in the disk group adg.

And what does ATCOPY stand for? It stands for atomic copy, because that is exactly
what is going on here. The new plex is receiving the data in a single, atomic operation. If
the process was stopped it would have to start from scratch again. An ATCOPY is a complete
copy from one plex into one or several other plexes. This is what it looks like when you add
two mirrors at once (to bvol in this case). You see that two plexes, bvol-02 and bvol-03, are
being added in the same operation, i.e. the data is only read once and then written twice:

vxassist -g bdg mrror bvol nmirror=2 &

vxtask |ist
TASKID PTID TYPE/STATE PCT PROGRESS
170 ATCOPY/ R 03.52% 0/ 2097152/ 73728 PLXATT bvol bvol -02 bvol - 03 hdg

Coming back to our mirror operation on avol we see that the vxtask is done and that
the volume has reached its final layout: two data plexes. And now both of them are read-
write. In other words, after the plex has been fully initialized the WO flag is reset to RW
(read-write) and thus the plex can start satisfying read requests, too, instead of being
limited to just receiving synchronisation data plus all current write 1/0s.

vxprint -ghtvgadg

v avol ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-01 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 avol - 01 adgol 0 2097152 0 c0t2d0 ENA
pl avol-02 avol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02- 01 avol - 02 adgp2 0 2097152 0 c0t3d0 ENA

5.6.2 READ-WRITEBACK, SCHRODINGER'S CAT, AND QUANTUM
PHYsICS

Atomic copy was really easy to understand, so let's switch to something intellectually more
challenging. This may be one of the hardest parts to understand for anyone learning VxVM.
It usually takes two or three attempts for anyone trying to understand it until "enlighten-
ment" is reached, but it is worth the trouble, if just for the nice sizzling feeling when you
finally begin to grasp the idea and the beauty of the concept. The train of thought required
for its understanding is basically the same as that required for understanding the very
basics of quantum physics: That the state of any object (especially a very tiny object like an
elementary particle (electron, proton, photon, etc.) is undefined until somebody measures
it! An object is in limbo until you look. This is a very unusual thought for most people. After
all, we like to think that everything exists whether somebody is looking or not. But it turned

132

Methods of Synchronisation

out that it is just not so (in Physics), because it has been proven over and over again using
hundreds of (rather complicated) experiments.

The theory of quantum physics sounded so wrong to many physicists in the early years
of the twentieth century that a Mr. Schrédinger created a thought experiment for the
purpose of demonstrating just how absurd the whole quantum theory was. We will need
it for analogy later, so let's look at the thought experiment. it is called Schrddinger's cat
paradox and it goes like this:

A cat (as a placeholder for any macroscopic object that you can touch and see directly)
is put into a sealed container. The container also holds a technical apparatus that consists
of

- A hammer
- Avial of poison (the poor cat is probably lucky it's just a thought experiment)
- An extremely tiny bit of radioactive material

- An amplifying device that will cause the hammer to hit the vial if a radioactive decay
happens.

The amount of radioactive material is so small that the probability for a decay hap-
pening in one day is fifty percent. The theory (which, along with the theory of relativity, is
now one of the best proven theories in physics) says the following:

If the decay happens then the hammer will hit the vial, break it, ad the cat will die
from poisoning immediately

If no decay happens, then the cat will stay alive (assuming it has been fed etc.)

As long as we haven't measured if the decay has happened, the cat is: what?

Well: Quantum theory says that unless we have measured its actual state the cat is
neither dead nor alive, but it is actually both, in an interleaved state. That is because the
state of any elementary particle (like the particle sent off by the decay that triggers the
deadly contraption) is undefined until it is actually measured. Therefore the state of the
whole system internal to the box must be undefined. In other words the cat is both alive
and dead at the same time, and only when we open the box will we find that it is still
meowing or has actually been dead for some time. All the time before we looked the cat
was both alive and dead.

Just in case that got you interested in the topic: There are many very good books on
the topic and | am not qualified to try and summarize them; you'll just have to believe it
for now, or get one of those books:

Now sit back and relax, free your mind and get ready to enter the world of reliable
uncertainty.

Suppose we had a volume that contained more than one plex, i.e. it is a redundant,
possibly multi-way mirrored volume. How is that volume written? It is written in the fol-
lowing way: If a write I/O is done for a file that was opened with the O SYNC option then
the write is completed after all plexes have been physically updated. That means the data
has been persisted to all mirrors. Only then is control passed back to the caller. In this case,
there is no uncertainty about the mirror contents, because the application only undertakes
the next step in its processing when the write has completed to all mirrors. Keep this in
mind: O_SYNC traffic is always written to all mirrors synchronously. There is therefore never
a consistency problem with data that has been written with the O SYNC flag set. All critical
data, like file system meta data, database transaction logs etc. is written this way.

133

Volumes

RESYNCHRONIZING VOLUMES

Now comes the hard part: Data that is written without the O SYNC option is not flushed
to all mirrors synchronously, but is flushed when the OS finds is suitable. For this reason,
it is typical for an active mirror to have differing contents with respect to the most recent
asynchronous write 1/0s. So far, so good. Now our system crashes and reboots. Some ques-
tions immediately pop up:

1. Can the volume be used right away or do we need to synchronize first?

2. Where is the most current data?

3. How do we go about synchronizing the mirror contents?

The first question can be safely answered with "use it right away". Making software for
highly available computers would not b very helpful if after a crash we stopped everything
until we repaired our own data structures and kept the user volumes from doing useful
work. So: all volumes are available immediately for read and write. This leads us to question
2, which takes the most effort to answer and to understand. I'll try to make it short: we do
not care where the most current data is! There, it's out! What will you think of VXVM now
that you know we don't care about your precious data? Is VXVM unreliable and useless?

It is most certainly not. Quite the opposite, actually. VXVM takes its job very seriously,
and it never works less reliably than a simple partition would. But the fact is that its
developers had an unusually clear view of exactly what is or is not required for a volume
management to work right. You see, if VXVM was trying to save the most recent data, then
it would make a lot of fuss and gain close to nothing, as we will see. Let's look at some
alternative approaches that a normal programmer might implement:

Silly Approach #1

We always write to the first plex in the volume first, and only after data is persisted to
that plex do we write the other plexes. This way, when the system comes back up after a
crash, we know that this plex has the good data and we can use it to copy the good data
over the stale data in all the other plexes. During that time the volume is only available
read-only, because any updates would bring the plexes out of sync again. Once the process
has finished, we can then enable the volume for read-write use.

This approach is often suggested when we ask Joe Sysadmin how they would think
a volume management might tackle the problem. They never get it right, and they usu-
ally don't even understand the right answer, so don't feel bad if you don't get it the first
time, OK? The problem with silly approach number 1 is that if we ask Joe Sysadmin what
the volume management would have to do when a disk in the "good" plex has failed and
this event has triggered a reboot (this is not a double fault so we need to catch it!), they
fail to find an answer. Eventually they will say something like: Well in that case we'll just
have to pick any one plex and use that as the source. To which my inevitable answer is
"well, if picking any plex in that case is good enough, why shouldn't it be good enough
in any case? The point being that if there are circumstances under which you need to fall
back to a perceived "inferior" solution then it is better to get that solution right and use
is exclusively than to have different ways of doing things depending on the circumstances.
We might end up producing a lot of code paths that are hardly ever taken and contain bugs
that are very hard to find.

So how do we get it right?

134

Methods of Synchronisation

Silly Approach #2

We keep a log bitmap that tracks every I/0 to every plex. Before a write I/O is flushed to
a plex a bit in the log is set for the corresponding volume region that is written to. When
the next plex is written the bitmap for that plex is set etc. When the system comes back
online after a crash, we can just inspect the bitmaps to find which data plex holds the
most current data.

True, but what effort are we going through? We need a synchronous write to a bitmap
for every asynchronous 1/0 to every plex! This is outrageously expensive!

Well, says the silly developer, it may be expensive but isn't it worth the expense?

The very clear answer is: It is not. Look at what you gain: nothing! At least nothing
worth mentioning. Remember that valuable data is written with the O SYNC flag, and is
persisted to all plexes before the write completes and returns to the user. That means that
we are doing the logging, leaving a volume read-only, writing to a special plex first etc.
just for the worthless asynchronous data! Our duty as a volume management product is
simply to behave like a partition, and asynchronous writes to a partition are not guaranteed
to persist either. Asynchronous writes are kept in the file system buffer cache until the 0S
decides to eventually flush them to disk. So trying to catch "the best" of those flushes is
just utterly useless! Considering the overhead involved with any of the silly approaches
their required CPU time and 1/0 capacity would be much better invested in just flushing
the file system buffer cache more often!

Catching the most recent data on a mirrored volume is roughly equivalent to delaying
the crash by some fractions of a second. What good is that? The valuable data is on disk
anyway, and the asynchronous data is not valuable, so why save it?

VxVM's Approach

Having (hopefully) understood that it is worthless to try and save the "newest" data on a
crashed mirror we arrive at question 3: How do we actually resynchronize a mirror?
This is a process that consists of several actions:

- Creating a "dirty region" bitmap in memory that marks those regions that need to be
resynchronised (the "dirty" regions)

- Initializing the dirty region bitmap so that everything is marked dirty (i.e. needs
resynchronisation)

- Starting the volume in a special Read-Writeback access mode (RDWRBACK)
- Spawning a kernel thread that reads the whole volume contents

- Resetting the access mode to normal once the thread has finished reading the vol-
ume

The secret to the resynchronisation process is the RDWRBACK mode. What happens in
this mode?

135

Volumes

WRITING IN RDWRBACK MODE — NOTHING SPECIAL

In RDWRBACK mode a write is handled almost normally: data is written to all plexes. The
difference is that if all plexes have confirmed that the data has been persisted to disk then
the corresponding bit in the dirty region bitmap is reset.

READING IN RDWRBACK MODE — VERY SPECIAL!

This is the interesting part: Remember that VXVM only has to make the volume look exactly
like a partition just so the file system driver does not get confused and crash? Good! Now
what does a partition never do that a mirrored volume might do? A partition never returns
different contents for the same block when it is read more than once. That's the crucial
part! That, and no more than that, is what VXVM must deliver! And how does it do it? It's
actually very simple. Before a block (or region or extent) is read it is read the dirty region
bitmap is inspected to see if that particular block of the volume is already in sync or not.
If it is in sync, then the read proceeds normally. If the bitmap indicates the region is dirty,
however, then the read is processed using the normal, round-robin pattern that is the
default for all volume manager volumes. But then, once the block is read its contents
are not delivered to the user right away. Before the user sees it, the block is first
copied to the appropriate location on all the other plexes. Only after this copying is the
block passed to the user process. Its contents are thus guaranteed never to vary between
consecutive reads. The next read my indeed be satisfied by another plex, but that plex will
contain exactly the same data, because that data has previously been copied to all the
other plexes.

Of course, after the data has been copied to the other plexes the corresponding bits
in the dirty region bitmap are reset to indicate that this particular portion need not be
resynchronised over and over again.

This behavior is exactly analogous to Schrédinger's cat experiment. We do not know
which version of the data we will be getting until we ask for it. Until then, all versions
of the data - new, old, corrupt - are equally valid choices because they are exactly what
could have resided on a partition after a crash, too. But once we do read a block, we com-
mit the data that we read to be THE ONE AND ONLY data, and all other possibilities are
immediately eliminated.

In principle we could live with this behavior forever. But it would be extra overhead
having to check the dirty region bitmap on each read /0 just in case there still was some
piece of the volume left out of sync. We could even crash and re-crash all the time while
resynchronizing without changing anything in terms of volume reliability. We would just
get the dirty region bitmap reset every time we crash, causing some extra 1/0, but there
would be no problem at all with data consistency.

But in order to make sure the resynchronisation process is finite so we can eventually
get rid of checking the dirty region bitmap for every read 1/0 volume manager starts a ker-
nel thread that reads the volume's dirty regions from beginning to end, throwing the results
away. Because the volume is in RDWRBACK mode this means that all the dirty regions will
have been read and their dirty region bits reset when the thread terminates and therefore
the volume access mode can safely be reset to normal.

We know this is pretty tough stuff to understand, but we hope you made it. If you
didn't get it the first time, sleep over it and try it again tomorrow. It's worth it for everyone

136

Volume Features in Detail

who enjoys a beautiful software design.

5.7 VoLUME FEATURES IN DETAIL

5.7.1 CONCAT

A volume of concat layout is much better than you may think. You will now learn why that
is the case.

First of all, let's again look at the data transfer rate of a disk. A disk as well as a LUN
in the year 2008/2009 transfers on the order of 50-100MB/sec. It does so very effectively
when it is streaming the data sequentially across the channel. As soon as the head needs to
move, however, we are again limited to about 100-200 transactions/sec. If those transac-
tions were reads (which can not be buffered by the storage array's large cache), then we
would accordingly be limited to let's say 200 reads per second. Say the size of the data
to be read is 8KB, which it is in many databases. Then we are limited to 200 times 8KB,
or1600KB or roughly 1.5MB/sec. This is about one percent of the sequential transfer rate.
On top of that, non-sequential data transfers create a lot more work for the CPUs and the
storage array front end controllers, which have to keep track of many more 1/0 requests
than in the case of a large sequential I/0.

But: Do we have any chance to keep scattered reads from happening? We hardly ever
do, as this is dictated by the application. We could try to influence the application devel-
opers, and they might even listen, but other than that, our 1/0 subsystem will just have to
satisfy whatever request comes.

So why do we even read this chapter, if we cannot keep scattered reads from happen-
ing? Well, what we do have is a chance not to make things worse! We'll show you how to
avoid this:

Never stripe volumes with a small stripesize across a large number of disks.

When in doubt, use concat instead.

A concat layout will not introduce additional CPU load and seek traffic to sequential
I/Os. Striping does that by splitting a single 1/0 into several smaller ones, which then need
to be serviced by the I/O subsystem. Read more about this in the next part.

5.7.2 STRIPE

Unlike you probably think striping will typically not improve random 1/0. It will also tend
to slow down sequential 1/0. There is a myth about how striping makes volumes faster, but
that myth is based on very old data from times when it was true. On today's hardware it
will generally tend to make things worse instead of improving them because of a number
of reasons. First of all, striping was invented for load balancing and for parallelizing 1/0,
which both sound like A Good Thing™. Even when striping was invented, there was notice-
able extra CPU load and a noticeable increase in volume latency. But those negative effects
were offset by the advantage of being able to do multiple I/Os in parallel, so the overall
effect of striping was perceived as positive.

137

Volumes

But due to Moore's law and the problem with mechanics the numbers shifted over time
by factors between 10 and 20,000, so what we are left with today is just the increased
latency and increased CPU load, while the effect of increased parallelity is negligible. Look
at the following example:

STRIPING ON EARLY Disk DRIVES

In the days of the old disks, when you did a sequential 1/0 to a single disk, the disk control-
ler initially had to wait for the first sector to fly by, then it started reading and transferring
sector by sector to the host (we'll leave out the possible interleaving factor for simplifica-
tion). Reading the sectors may have taken a few revolutions, so let's say the 1/0 took the
following times: half a rotation (on average) to wait for the initial sector, plus (say) four
rotations for the data transfer, because there were relatively few sectors on each track. In
total, this would be 4.5 rotations.

Doing the same 1/0 and a volume that was striped across eight disks would exhibit a
totally different behavior: On the plus side, the number of rotations (once the right sector
was under the read/write head) would sink by a factor of eight. So instead of four rotations
there would only be half a rotation for the transfer. All 1/0s was parallelized, and this was
obviously faster than before.

On the minus side, however, there was an increased latency in waiting for the first sec-
tor. This was because now we did not have to wait for one first sector but for eight different
ones. And the chance for one of those sectors being relatively far away from the read/write
head was eight times higher than before. So the rotational latency would increase. Let us
say for the sake of simplicity that the rotational latency increased from an average of 0.5
to an average of (close to) one. Then the whole transfer would take one rotation for the
latency plus half a rotation for the parallel transfers, or 1.5 rotations total.

Obviously, that was a huge advantage.

And then Moore's Law came into play.

STRIPING ON CURRENT Disks AND LUNSs

The amount of data on a track multiplied by factors of several thousands, while due to
the limitations of the mechanical systems on a disk the rotational speed merely doubled
or tripled (from 3,600-5,000rpm to 7,200-15,000rpm). So what does a striped 1/0 look like
today?

A data transfer that would be satisfied from a single disk (or concat volume) would
take half a rotation (average) to wait for the first sector, and then only a few degrees,
maybe one tenth of a rotation, for the data transfer. The sum is 0.6 rotations. Stripe this
across eight disks and you double the average initial latency to almost one rotation, and
then divide the tiny part that actually transfers data (one tenth of a rotation) by eight. The
total is one rotation plus 1/80th or so, which is negligible.

Congratulations, you just increased the latency, loaded your CPU with seven extra
I/O setups (each of which take about as long as a 64K block transfer), loaded the storage
array's front-end and back-end controllers with extra I/Os, trashed the read-ahead cache
in the storage array, and put extra seeks onto everybody else's LUNs (which use the same
physical disks that your LUNs use). Your array vendor will gladly offer you an upgrade to a
more expensive machine!

138

Volume Features in Detail

| think we agree that striping is not a good idea for sequentially accessed volumes.

How about random 1/0?

If you think about it you will find that random 1/0 across the whole volume is not
helped by striping at all. Random /0, by definition, is distributed across a large volume
area, and whether you stripe your volume or concat it does not make any difference in
the distribution of I/Os that hit each disk. So striping brings no advantage for random 1/0
either. To sum it up, striping brings a disadvantage to sequential 1/0, and no advantage to
random /0.

Your DBA may demand an 8KB stripe size for the database volumes because (as many
DBAs think) this improves database performance by distribution of 1/0 requests across all
LUNSs. Such a DBA is probably not aware that random 1/0 is distributed across the storage
anyway, and those nice large sequential 1/0s will be hacked into minced meat by the time
they reach the storage array

Having said that, there are still (a few) reasons pro striping. For instance, if your vol-
ume was not evenly filled with data but the data only occupied the first part of the volume,
then it would indeed be better to stripe the volume in order to distribute some of the 1/0
to other physical disks. Keep in mind, however, that modern file systems already try to dis-
tribute their allocations across all the available space. The old uf s file system uses cylinder
groups for that purpose, vxf s allocates across the whole volume also, but without the need
for cylinder groups. If you are using data base raw device I/O that is one case where such
a usage pattern would be conceivable.

Another reason may be controller or path saturation in the host or in the storage array,
which could be alleviated by striping.

Whatever your reasons are to stripe your volumes, be aware of the following basic
facts:

- The more columns a stripe has the more the volume's latency will increase

- The more columns a stripe has the more the probability for fault increases. If any
column fails the whole volume is unusable.

- The smaller the stripe size the more extra 1/Os you create because 1/Os span more
than one column and must be sliced into more than one physical 1/0

- The worst case is a small stripe size and a misaligned data file on top. Imagine an
8KB stripe size and 8KB I/0 happening on it, but at an offset of 4KB. Every single I/0
will have to be sliced in two and handled separately.

If you do not have dedicated physical disks for yourself, then the more you stripe, the
more you impact everybody else's performance.

5.7.3 MIRROR

Redundancy is not an option, it is a necessity. Data needs to be redundant in order to be
reliably accessible. The main question is where to put the redundancy: in the storage array
or in the host. If you use redundant LUNs then in many cases they will be some implemen-
tation of parity-stripe, i.e. RAID-4 or RAID-5. There is not much to say against this concept,
as long as the implementation is done in hardware, with predictive error analysis and auto-
matic reporting, and with a large enough write buffer. All of this is usually the case with

139

Volumes

the large storage vendors. In many cases you can also use mirrored LUNs internally, but this
often is not much better than the internal parity stripes. If you use host based mirroring
anyway, e.g. because you are mirroring between two or more data centers, then you may
decide to use non-redundant LUNs. There is no Right Way™ to do it, so | will just give you
some help for your decision for or against host-based mirroring.

HosT-BASED MIRRORING VS. STORAGE—BASED MIRRORING

Storage-based redundancy has several advantages and few disadvantages, but please
weigh the arguments yourself.
Arguments pro storage-based mirroring are:

- You only transfer that data once across the channel; the storage array's CPUs take
care of creating the redundancy.

- Storage-based redundancy exposes you less to media errors. Basically, your disks
never seem to fail.

- You needn't check your volumes for disabled plexes as frequently and thoroughly as
you would with non-redundant storage.

- You don't generally need to deal with recovery from media errors in VXVM.

- VxVM won't need to deal with failures to write to Private Regions.
And the arguments pro host-based mirroring are:

- System administrators can manage redundancy according to demand. Mirrors can be
added and removed, even low-level repairs can be done because the system adminis-
trator has access to all the basic data structures from VxVM. Of course, that requires
quite a lot of expertise.

- Host-based mirroring can be cheaper in those cases where remote mirroring is
employed. If your system mirrors data to a remote data center then using mirrored
storage in both data centers would effectively constitute a four-way mirror, which
costs a lot more than a simple, two-way mirror. While remote mirroring can be done
inside the storage array, too, it typically has issues with latency and | do not gener-
ally advise it. You won't believe how slow the speed of light is when used with those
synchronous replication/mirroring protocols! On the other hand, if one of your data
centers fails and all you have is host-based mirroring, then be aware that for the
whole time between failure and full resynchronisation you will have no redundancy
at all. This may or may not be acceptable to your company.

To sum it up: storage-based mirroring helps everywhere and just hurts your wallet.
Host-based mirroring can be a nice addition if you mirror between locations, which cannot
usually be done efficiently by storage-based (remote) mirroring.

VXVM MIRROR READ PolLicy

If you decided to use host-based mirroring then it is good to know what exactly VxXVM does
when it writes to or read from a mirrored volume. Here's what it does:

140

Volume Features in Detail

Write 1/0: Asynchronous

If data is written to a mirror without the O SYNC flag set (i.e. normal user file system 1/0),
then the write is scheduled for all plexes and control is immediately returned to the user
process. The actual /O operations are initiated as the queue is being processed, and they
will typically complete out-of-sync. So if there are asynchronous |/Os on a mirror, then even
if the user process that initiated the write has regained control it is not sure if the data has
been persisted onto all plexes, onto some plexes, or even onto any plex. This sounds alarm-
ing, but it is in fact identical to the behavior of a partition. The SCSI driver will acknowledge
an asynchronous 1/0 to a partition before the SCSI 1/0 has actually completed. Even if the
user process has regained control (i.e. the system call has returned) it is not sure whether
or not the data has been flushed to disk. This is not normally a problem because normal file
I/0 is not considered critical. If critical data are written, like database entries or file system
meta data, then those data are written synchronously (see below).

Write 1/0: Synchronous

A write that carries the O SYNC flag or that is executed on a raw device or a mount point
that has been mounted with the -0 directio option will not return to the initiating
process before all plexes have been successfully written to. l.e. if the user process regains
control after writing synchronous data then it is guaranteed that all instances of the data
on all plexes are identical. This is important because synchronous 1/0 is typically generated
by applications that require some kind of guaranteed behavior. When a synchronous write
returns and data has not actually been persisted then this breaks the software's writing
paradigm and will eventually lead to unpredictable results.

Read I/0

A read from a mirrored volume is satisfied from any one of the active plexes, i.e. those
plexes that contain valid data (those that have failed in the meantime are flagged accord-
ingly and not used any more). There are two ways that VXVM uses to read from a mirror:
One is called "Round Robin" (rdpol =round). This means that reads are satisfied from one
plex after the other until all plexes have been used, and then the first plex is used again.
This is done in order to balance the load between the individual LUNs or disks. The other
one is called "Preferred Plex", and the preferred plex is named and associated with the vol-
ume. This means that all reads are satisfied from that preferred plex (because it has faster
storage, because that storage is located closer to the host and thus has lower latency,
etc.).

By default, volumes have a read-policy called "Select", which means no more than
VxXVM will select the most appropriate read policy between "Round Robin" and "Preferred
Plex" by examining the volume layout. If the volume consists of plexes with identical
layout, then the "Round Robin" policy is used. If one plex has a larger number of stripe
columns than the others then that the read policy will be "Preferred Plex" for the plex with
the highest number of columns. To set the read policy to "Preferred Plex" manually, or back
to "Round Robin" or "Select", use the vxvol rdpol command:

vxvol rdpol prefer avol avol-02
vxvol rdpol round avol

141

Volumes

vxvol rdpol select avol

5.7.4 RAID-4 AnD RAID-5

These RAID-Levels sound good, because they combine the classic stripe load distribution
scheme with volume redundancy. But that comes at a price. In general, RAID-4 and RAID-5
stripes suffer on small writes. You will soon see why. Their redundancy is also severely lim-
ited, and in summary, using software implementations of RAID-4 or RAID-5 for enterprise
systems does not usually make much sense. Veritas Volume Manager does not implement
RAID-4, but RAID-5 is offered (see The Full Battleship). Since this is the Technical Deep
Dive section, let's look at how RAID-4 and RAID-5 are implemented. We will need to look
at four major areas: Parity calculation and distribution, read/write behavior, degraded mode
(i.e. after a single media has failed) and recovery behavior.

PARITY CALCULATION

Parity calculation is a very clever scheme to quickly recover lost data. This is how the prin-
ciple works: Take any number of bits, i.e. ones and zeros, and note if the amount of ones in
that set of bits is an even or an uneven number. E.g. the bit pattern

10101101

consists of three zeros and five ones. Five is an uneven number so we note that the
parity of this bit pattern is uneven. We do this by setting its parity bit to one. The resulting
extended bit pattern (the bit pattern including the parity bit) will thus have even parity.

101011011

Now if any of the bits in the original pattern were to get lost we could use the par-
ity information to calculate what the original bit had been by just doing the parity check
again. If the parity of the current bit set (including the parity bit, but not including the bit
that was lost - we cannot access it) is even, then the original bit must have been zero. If
the parity is uneven, then the original bit must have been one. Of course, if we lost another
bit, then all would be lost and we would have no chance of recovering the lost bits.

This parity scheme is how RAID-4 and RAID-5, which are therefore called parity stripes,
are implemented. The individual bits in out bit set represent the columns of the parity
stripes. The parity bit represents the additional parity column of the parity stripe volume.
Of course addressing and counting every single bit in every block of the stripe on every
write would be extremely slow. Instead of actually counting the individual bits, the CPU's
XOR operation is used, which can be applied to whole words rather than bits. The XOR opera-
tion combines two values bitwise such that the resulting bit is equal to one if exactly one
of the input values was equal to one. If they are both zero, the resulting bit is zero, and
if they are both one, the resulting bit is also zero. In other words, XCOR flags differences in
the input values. In effect, this yields exactly the parity information. So what happens in
a parity stripe is that the blocks on each stripe are combined using blockwise XOR and the

142

Volume Features in Detail

resulting block, that contains the parity information for the whole stripe, is then written to
the separate column in the RAID-4 implementation.

It quickly becomes obvious when one thinks about the problem for a while that the
parity column will be overloaded with I/O as soon as several processes write to the RAID-4
volume. Each write needs to flush the corresponding parity information to the dedicated
parity column, so while user data my be distributed to different disks, each write also puts
load on the parity column. This is why in the next iteration, RAID-5, the parity was no
longer put onto a dedicated column, but rather distributed across all columns. The techni-
cal term for the distribution, in case you are interested in obscure and useless tidbits, is
"left-symmetric layout".

READ BEHAVIOR

Read behavior for RAID-4 is identical to a common stripe, read behavior for RAID-5 is a
little bit different because the parity information is distributed and thus one more column
is effectively working for user I/0. Hence, RAID-5 read performance tends to be a little
better than a standard stripe, because it uses one column more than a normal stripe of
the same size.

WRITE BEHAVIOR

Write behavior is indeed very interesting for parity stripes. We are rather sure that after
reading this, you will quickly forget about parity stripes and use different layouts from
then on.

Full-Stripe Write

In the best case, a full stripe is written. This is a relatively quick and easy process: The parity
information is calculated from all the data buffers, the data is flushed onto the data col-
umns for that volume region, and the parity information is written onto the parity column
for that volume region (remember that the parity column is not constant with RAID-5). This
is a little work for the CPU as well as an extra 1/0 for the parity column, but one extra |/0
is certainly less than twice the 1/Os, as we would have to do if the volume was a mirrored
one. However, consider what happens when the write is interrupted because of a system
fault (panic, power loss etc.). The parity information would not match the data any more.
If you imagine a case where the system panics because of an error in the SAN that makes
the system lose a disk in a funny way, then VxXVM would have to reconstruct the data on
the missing column using outdated parity information. If this happens to an area that
holds important meta data then the meta data that is calculated by XCRing the remaining
columns with the parity column software will be seriously corrupt. It will be random data.
Not just old data, but random! You don't want random data on your superblock, do you?

How do we solve the problem? We solve it by adding another protection mechanism
called a transaction log. The transaction log is located on a different LUN from the data
and parity column. It represents a circular buffer that holds (in the case of VxVM) the last
five writes to the parity stripe. That means that all write 1/0 is effectively done twice: first
to the transaction log, then to the actual data and parity columns.

Storage arrays will store the transaction log in non-volatile memory instead of on

143

Volumes

disk, which makes such hardware implementations much faster. They can also use special
hardware for parity calculation, which again speeds up the hardware implementations vs
software implementations.

In any case, storage array or VXVM, if the volume is started after a crash, all transac-
tions from the transaction log are reapplied to the parity stripe in the order they appear in
the log, in order to ensure consistency between data and parity and also to have the most
current data available.

Most-Stripe Write

If most, but not all columns are written then if we just write the data the parity will be out
of sync with the data because the new data is not represented in the parity. If we write
data plus the newly calculated parity of the data the problem is not solved because then
the remaining old data is not represented in the parity. What we need to do is actually
read the remaining old data columns, the ones that will not be overwritten, then calculate
the parity using that old data plus the new data that is to be written, and then write the
new data and new parity. Of course, since we write via the transaction log, what actually
happens if we do a most-stripe write is this:

1) Read remaining columns
2)
3) Write new data plus new parity to transaction log
4)

Calculate new parity

Write new data plus new parity to their respective columns

Doesn't sound quick, does it? Now look what we have to do when we write just a small
number of columns

Few-Stripe Write

In this case it would be suboptimal to read all the remaining columns from the volume;
there could be many. Instead, we read the columns that we are going to overwrite, plus the
parity column. Then, we XOR the old data out of the parity data, XOR the new data into the
parity, write the transaction log and finally the volume. It looks like this:

1) Read columns that will be overwritten
Read parity column
XOR old data with parity to extract old data's parity

)
)
4) XOR new data with parity to insert new data's parity
) Write new data plus new parity to transaction log
)

Write new data plus new parity to their respective columns

Doesn't sound efficient either, does it? Wait until you see degraded mode!

144

Volume Features in Detail

DeEGRADED MoODE READ/WRITE BEHAVIOR

When one of the columns in a parity stripe fails the volume is switched to degraded mode.
This means several things:

- The volume is no longer redundant
- Reads from existing data columns are satisfied in the normal way
- Writes to the volume proceed in the normal way

- Reads from the failed data columns are satisfied by reconstructing the missing
data.

Reconstruct-read, as it is called, is performed by using all the other columns plus the
parity information to calculate what had originally been on the column that is no longer
accessible. What does that mean for the volume's performance and reliability? It means
that when, for instance, in a 10-column RAID-5 volume one disk fails, then for 10% of the
read 1/Os (the ones that would read from to the missing disk), nine columns must be read
instead of just one, i.e. the number of disk accesses caused by reads practically doubles.
Additionally, the XCR calculations must be performed by the CPU. Imagine a RAID-5 volume
that is suffering from lots of scattered reads (the worst case today, as we proved near the
beginning of this book). If one of the disks overheats, e.g. because a fan in the tray is bro-
ken, then all the other disks will have to deliver twice the amount of reads! This will not
only slow down the performance even more, but it will also lead to more heat, increasing
the probability for another failure. But now we are no longer redundant, so if the next disk
fails the volume will become inaccessible!

RECOVERY BEHAVIOR

As soon as a column has failed in a parity stripe we must restore redundancy in order to
keep up reliability. Unfortunately, what that means is that the replacement for the failed
disk must be initialized with exactly the data that was lost. No problem in principle, since
we can always reconstruct that data using the parity column plus all the remaining data
columns. But if you read the last paragraph then you know that by now the number of
read-1/0s to the remaining disks has already doubled, and now we're forcing even more
I/0 onto the system by systematically requesting all the data in the lost column - even the
empty blocks since we are reconstructing on the raw device level! Keep in mind that for
every extent whose data we want to reconstruct we have to read the corresponding extents
on all the other data columns plus the parity column, and then calculate the original data
and write it to the extent! This is an enormous strain on the 1/0 subsystem as well as the
CPU. It therefore takes a long time, during which we are very slow and very vulnerable to
further failures.

It is for these reasons that | do not recommend using parity stripes for enterprise
applications; at least not software implementations of parity stripes. Hardware implemen-
tations are better because they do not require physical writes to a transaction log (which is
in battery-backed memory), they do predictive failure analysis pretty well and they usually
have hardware-assisted parity calculation engines to reduce the CPU load

145

Volumes

5.7.5 MIRROR-CONCAT

This is actually exactly the same as a plain mirror. Concatenation is the default layout, and
even a volume with just a single, tiny subdisk is called a concat volume. This is similar to
the cat command in UNIX, which is called that way because it can concatenate several
files, but you still cat a file even if it's just a single one.

5.7.6 MIRROR-STRIPE

A mirror-stripe layout combines striping with mirroring. It is equivalent to the combined
RAID level RAID-01. The basic plex layout of the volume is stripe, and another striped plex
is attached to the volume. This has the advantage of adding mirror-like redundancy to the
stripe, which is much better than a parity-stripe. If any of the disks in plex 1 fails then plex
2 still has the complete set of data. Further disk failures in the plex 1 stripe do not affect
the volume because plex 1 is detached as soon as the first failure is detected. If another
disk failure occurs in plex 2, the volume will be unavailable because plex 2 is also detached
due to the disk failure.

Read/write 1/0 is performed according to the same read policy as a mirror (round
robin/select/preferred plex), and of course data is always striped across all columns as it
is in a stripe.

There is a much better layout called stripe-mirror, or RAID-10, which instead of mirror-
ing stripes will create individual mirrors and then stripe across them. This is called a layered
volume and is covered in the chapter on layered volumes.

5.7.7 MIXED LAYOUTS

It is possible in all UNIX versions of VxXVM to have a different layout in every plex. It is
not possible in the Windows implementations, but that operating system has more serious
limitations to worry about than VxXVM limits anyway.

You cannot create mixed layout volumes with a single vxassist command, but once you
have a volume you can just add plexes to it using vxassist mirror, and specify any kind of
layout you want. Actually, adding a RAID-5 plex to a volume or adding another plex to a
RAID-5 volume is not a straightforward task with vxassist either (it requires using layered
volumes, but it does work). Once you have the multi-layout volume you can use it just like
any other volume, but some features will not work any more. These are:

- Snapshots

- Fast mirror resynchronisation
- Relayout

- Resize

For these reasons you may want to stick with standard layouts. They are more thor-
oughly supported. But it sure is good to know that there is no hard limit inside VxXVM that
enforces identical layouts for all data plexes.

146

Relayout in Detail

5.8 RELAYOUT IN DETAIL

The relayout feature of VXVM is pretty fascinating to watch in action, and you may wonder
what is going on inside. We can tell you some of it, but we did not write the code, and the
actual behavior varies with source and destination layouts, so please pardon if sometimes
the details may seem a little odd. In order to understand this explanation it is absolutely
necessary that you have a good understanding of what a layered volume is, so please make
sure you have read the chapter on layering and layered volumes.

What happens when you relayout a volume is this:

First of all the volume to relayout is being layered and pushed down several layers
(depending on the exact parameters, typically to layers three or four). This allows
VXVM to still access the volume from both user and kernel perspective, while at the
same time enabling very thorough rearrangement of plexes and subdisks inside the
volume.

The next thing that vxassi st does is look at the size of the volume to find the right
size for a mirrored internal temporary buffer subvolume that the relayout process
uses to copy data from the source subvolume to the destination subvolume. This
buffer is then created as just a normal, mirrored volume, which is then layered and
stuffed deep down into the volume that is about to undergo relayout. We will find
usually it in layer three or four, and if you look at the output of vxtask |ist right
after you start the relayout process then you will find a subvolume that is being
synchronised using the RDWRBACK synchronisation method. This is the synchronisation
of the internal buffer subvolume.

If the volume to relayout is very small (i.e. smaller than 50MB) then it creates a buf-
fer subvolume that is the same size as the volume. If the volume is between 50MB
and 1GB then it will create a 50MB buffer subvolume, and if the volume is larger
than 1GB it will create a 1GB buffer subvolume. Actually the 50MB value is outdated
now, but it used to be true. With Storage Foundation 5.0 the value seems to be more
dynamically allocated and generally be slightly more than 10% of the source vol-
ume's size.

The next thing that happens - after persisting the intended relayout operation in the
private region - is that the relayout kernel thread fills the buffer volume with data
from the beginning of the source subvolume. Let us assume the extent of the buffer
subvolume is 50MB. It then maps the buffer subvolume into the first 50MB of the
source subvolume and unmaps the first 50MB of the source subvolume to free the
subdisks. Now it allocates and maps the first 50MB of the destination subvolume in
the correct destination layout and begins to copy the data from the buffer to the
destination subvolume. Remember that all those subvolumes are contained in what
the user uninterruptedly sees as the original data volume. They are just pushed way
down several layers.

Once the buffer subvolume's contents have been copied the first 50MB of the user
volume are remapped to point to the new, destination volume. So from now on
accesses to the first 50MB extent will be directed to the target subvolume, and
accesses to the rest will be directed to the source volume.

Now the circle repeats with the next 50MB, then the next, and so on, until the whole

147

Volumes

source subvolume is copied onto the target subvolume.

- Then, the buffer subvolume as well as the rest of the source subvolume are freed,
the target subvolume is unlayered and the relayout intent removed from the Private

Region. Relayout is finished.

What actually happens is much more complicated than that. You will see up to seven
subvolumes involved in a relayout process, not all of which can be easily explained, but

this is the rough idea of it.

Since we are in the Technical Deep Dive section anyway, here is a short walk-through

of a relayout:

vxprint -qrtL -g adg # -q: no headers, -rt: nore info, -L: separate |ayers

v avol ENABLED ACTIVE 4194304 SELECT

pl avol -01 avol ENABLED ACTIVE 4194304 CONCAT

sd adg01-01 avol - 01 adgol 0 4194304 0 c0t 2d0
vxassist relayout avol ncol=4 & # Start the relayout process

[1] 21976

vxtask list # Let's look at the tenporary buffer vol ume
TASKID PTID TYPE/ STATE PCT PROGRESS

241 RDWRBACK/ R 16. 12% 0/ 419328/ 67584 VOLSTART avol - T01 adg
bc -1 # Let's see how large the buffer subvolume "avol-T01" is
419328/ 2048
204. 7500000000 # 204.75 MB, around 10% of the vol ume size
vxtask list # Let's see if the actual relayout has started yet.
TASKID PTID TYPE/ STATE PCT PROGRESS

243 RELAYQUT/ R 00. 05% 0/ 8388608/ 4096 RELAYQUT avol adg
vxrel ayout status avol
CONCAT --> STRIPED, colums=4, stwi dth=128
Rel ayout running, 0.00% conpl eted.

vxtask list
TASKID PTID TYPE/STATE ~ PCT PROGRESS
243 RELAYQUT/ R 02. 25% 0/ 8388608/ 188416 RELAYQUT avol adg
vxprint -grtL -g adg # Look at those six subvolunes in layers 2 and 3!
[...]
v avol - ENABLED ACTIVE 4194304 SELECT
pl avol-tp0l avol ENABLED ACTIVE 4194304 CONCAT
sv avol-ts01 avol-tp0l avol-101 2 4194304 0 3/5
v2 avol - 101 - ENABLED ACTIVE 4194304 ROUND
rel ayout

p2 avol -1p0l avol-101 ENABLED(SPARSE) SRC 4194304 CONCAT

sv avol-1s01 avol-1p01 avol-S01 1 2936320 1257984 1/1
v3 avol - S01 - ENABLED ACTIVE 2936320 SELECT

p3 avol - 01 avol - S01 ENABLED ACTIVE 2936320 CONCAT

s3 adg01-01 avol - 01 adg0l 1257984 2936320 0 c0t 2d0

p2 avol-1p02 avol-101 ENABLED(SPARSE) TMP 1677312 OONCAT

148

fsgen
RW
ENA

fsgen

ENA

ENA
fsgen

ENA

Relayout in Detail

sv avol-1s02 avol-1p02 avol-T01 1 419328 1257984 2/2 ENA
v3 avol - T01 - ENABLED ACTIVE 419328 SELECT - fsgen
p3 avol - T01-01 avol - TO1 ENABLED ACTIVE 419328 CONCAT - RW
s3 adg02- 01 avol -T01-01 adg02 0 419328 0 c0t3d0 ENA
p3 avol - T01-02 avol - TO1 ENABLED ACTIVE 419328 CONCAT - RW
s3 adg03-01 avol -T01-02 adg03 0 419328 0 c0t4d0 ENA
p2 avol -1 p03 avol - 101 DI SABLED UNUSED 4194304 CONCAT - RW
sv avol-1s03 avol-1p03 avol-W1 1 4194304 0 0/1 DS
v3 avol - W01 - DI SABLED EMPTY 4194304 SELECT - fsgen

p3 avol - Up01 avol - W01 DI SABLED(SPARSE) ACTI VE 5031552 STRIPE 4/128 RW
s3 adg01- 02 avol -Up01 adg01l 314496 943488 0/314496 c0t2d0 ENA
s3 adg04- 01 avol-Up01 adg04 314496 734080 1/314496 c0t10d0 ENA
s3 adg05- 01 avol -Up01 adg05 314496 734080 2/314496 c0t11d0 ENA
s3 adg06- 01 avol -Up01 adg06 314496 734080 3/314496 c0t12d0 ENA

p2 avol -1p04 avol-101 DI SABLED(SPARSE) WD 0 CONCAT - WO
sv avol-1s04 avol-1p04 avol-W1 0 0 0 11 ENA
v3 avol - W1 - ENABLED ACTIVE 0 SELECT - fsgen
p3 avol - W0l avol - W1 ENABLED ACTIVE 0 STRI PE 4] 128 RW
p2 avol -1p05 avol-101 ENABLED(SPARSE) DST 1257984 CONCAT RW
sv avol-1s05 avol-1p05 avol-D01 1 1257984 0 11 ENA
v3 avol - D01 - ENABLED ACTIVE 1257984 SELECT avol - Dp01
fsgen

p3 avol - Dp0l avol - D01 ENABLED ACTIVE 1257984 STRIPE 4] 128 RW
s3 adg01- 03 avol-Dp01 adg0l 0 314496 0/0 c0t2d0 ENA
s3 adg04- 02 avol-Dp01 adg0d 0 314496 1/0 c0t10d0 ENA
s3 adg05- 02 avol-Dp01 adg05 0 314496 2/0 c0t11d0 ENA
s3 adg06- 02 avol-Dp01 adg06 0 314496 3/0 c0t12d0 ENA

We'll let some time pass here to give the relayout process some time to proceed with
doing its work. Look at the highlighted output. What you can identify are the source sub-
volume (SRC), a temporary subvolume (TMP), an unused subvolume (UNUSED), a write-only
and write-on-demand subvolume (WO, WOD), and the destination subvolume (DST).

vxrel ayout status avol

CONCAT --> STRIPED, colums=4, stwidth=128

Rel ayout running, 69.98% conpl et ed.

vxprint -qrtlgadg # Subvol une sizes have changed!

[...]

v avol - ENABLED ACTIVE 4194304 SELECT - fsgen
pl avol -tp0l avol ENABLED ACTIVE 4194304 CONCAT - RW
sv avol-ts01 avol-tp0l avol-101 2 4194304 0 415 ENA
v2 avol-101 - ENABLED ACTIVE 4194304 ROUND

149

Volumes

rel ayout

p2 avol -1 p01
sv avol -1s01
v3 avol - S01
p3 avol - 01
s3 adg01-01
p2 avol -1 p02
sv avol -1s02
v3 avol - T01
p3 avol - T01- 01
s3 adg02- 01
p3 avol - T01- 02
s3 adg03- 01
p2 avol -1 p03
sv avol -1s03
v3 avol - W01
p3 avol - Up01
s3 adg01- 02
s3 adg04- 01
s3 adg05- 01
s3 adg06- 01
p2 avol -1 p04
sv avol -1s04
v3 avol - W1
fsgen

p3 avol - W0l
s3 adg01- 05
s3 adg04- 03
s3 adg05- 03
s3 adg06- 03
p2 avol -1 p05
sv avol -1s05
v3 avol - D01
fsgen

p3 avol - Dp0l
s3 adg01- 03
s3 adg04- 02
s3 adg05- 02
s3 adg06- 02
[1] + Done

avol -

avol -

avol
avol

avol -

avol -

avol
avol
avol
avol

avol -
avol -

avol -
avol -
avol -
avol -
avol -
avol -

avol -

avol
avol
avol
avol
avol

avol -

avol -
avol -
avol -
avol -
avol -

vxprint -grtLgadg

[...]

150

101

[p01

-801
-01

101

[p02

-T01
-T01-01
-T01
-T01- 02

01
I p03

w01
Up01
Up01
Up01

Up01
101

| p04

-1
- W01
- W01
- W01
- W01

avol -

101

| p05

D01
Dpo1
Dpo1
Dpo1
Dpo1

ENABLED(SPARSE) SRC 4194304 CONCAT RW
avol -S01 1 839680 3354624 1/1 ENA
ENABLED ACTIVE 839680 SELECT - fsgen
ENABLED ACTIVE 839680 CONCAT - RW
adg0l 3354624 839680 0 c0t2d0 ENA
ENABLED(SPARSE) TMP 3354624 CONCAT - RW
avol-T01 1 419328 2935296 2/2 ENA
ENABLED ACTIVE 419328 SELECT fsgen
ENABLED ACTIVE 419328 CONCAT - RW
adgd2 0 419328 0 c0t3d0 ENA
ENABLED ACTIVE 419328 CONCAT - RW
adgd3 0 419328 0 c0t4d0 ENA
DI SABLED UNUSED 4194304 CONCAT RW
avol -U01 1 4194304 0 0/1 DS
DI SABLED EMPTY 4194304 SELECT fsgen
DI SABLED(SPARSE) ACTI VE 13418112 STRIPE 4/ 128 RW
adg0l 838656 2515968 0/838656 cO0t2d0 ENA
adg04 838656 209920 1/838656 cO0t10d0 ENA
adg05 838656 209920 2/838656 cOt11d0 ENA
adg06 838656 209920 3/838656 cO0t12d0 ENA
ENABLED(SPARSE) WOD 3354624 CONCAT WO
avol -W1 1 419328 2935296 1/1 ENA
ENABLED ACTIVE 419328 SELECT avol - Wo1
ENABLED ACTIVE 419328 STRIPE 4] 128 RW
adg0l 733824 104832 0/0 c0t2d0 ENA
adg04 733824 104832 1/0 c0t10d0 ENA
adg05 733824 104832 2/0 c0t11d0 ENA
adg06 733824 104832 3/0 c0t12d0 ENA
ENABLED(SPARSE) DST 2935296 CONCAT RW
avol -D01 1 2935296 0 11 ENA
ENABLED ACTIVE 2935296 SELECT avol - Dp01
ENABLED ACTIVE 2935296 STRIPE 4] 128 RW
adgdl 0 733824 0/0 c0t2d0 ENA
adgdd 0 733824 1/0 c0t10d0 ENA
adgds 0 733824 2/0 c0t11d0 ENA
adgo6 0 733824 3/0 c0t12d0 ENA

vxassi st relayout avo

ncol =4 &

Relayout in Detail

v avol - ENABLED ACTIVE 4194304 SELECT avol-01 fsgen
pl avol -01 avol ENABLED ACTIVE 4194304 STRIPE 4] 128 RW
sd adg01-03 avol - 01 adgol 0 1048576 0/0 c0t2d0 ENA
sd adg04- 02 avol - 01 adgod 0 1048576 1/0 c0t10d0 ENA
sd adg05- 02 avol - 01 adgd5 0 1048576 2/0 c0t11d0 ENA
sd adg06- 02 avol - 01 adgoé 0 1048576 3/0 c0t12d0 ENA

The relayout has successfully completed, and the volume now has the desired target
layout of stripe with four columns.
We hope this has enlightened you about several things:

1) You can trust VXVM's relayout feature. It is not magic, but actually understandable
with reasonable effort.

2) Relayout would be really hard to do manually, if you had to allocate your own storage
objects.

3) It actually works online, with no downtime to the application.
4) It is crash-proof and can be restarted and reversed at will.

151

